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Preface

This programmer’s guide is part of a larger set of documentation;
the entire set is shown in Figure I. Start with the PV=WAVE
Tutorial, and then refer to the user’s guide and this programmer’s
guide for other fundamental information about how to use the
high-level visualization features of PV=WAVE Advantage and CL.
You will also want to refer to the PV=WAVE User's Guide for
Advantage and CL and the PV=WAVE Reference for Advantage
and CL, Volumes I and II for detailed information.

For your convenience, all of the documents shown in Figure I are
available online, as well as being available in a hardcopy format.
Additional copies of the hardcopy documentation can also be
ordered from Visual Numerics, Inc., by calling 800/447-7147.

Contents of this Programmer’s Guide

This programmer’s guide contains the following chapters:

« Preface — Describes the contents of this guide, lists the
typographical conventions used, explains how to use the
PV=-WAVE documentation set, and explains how to obtain
customer support.

xXXi



PV-WAVE “Core” Documentation

3 > = g
= @ © c
- E (g
S 3 5 -
83 53 =3 s3 «
=1 @ %3 L
ég | |E®| |22 &z $
G ] oL ® [ .E
- Q o D (]
2 2% |22 |29 §
o% a 8 [ o= T
I.l.l= = < = <
S w o weao w w
> > > > > > > >
T 8] T T <>t
=3 =< =3 N s
>2 | |38 >0 >0 z
o= | a s | [- =4 a e a
Multi-Volume Index

Learning Aids

PV-WAVE Tutorial

Optional Modules

=

S

Oow

B

23| |2

29 c o
Sw [T o
© - S O
o3 o =3
ws w3 w 32
> >0 >0 4
<= < o»n < w»
23 2% ]
> o >0 >
o c a>o a>

Figure | PV=WAVE documentation set; for more information about any
one book you see shown here, refer to its preface, where the contents of
each chapter are explained briefly. Be sure to avail yourself of our thor-
ough product documentation and our excellent online learning aids. All
documents are available both online and in a hardcopy format. Additional
copies of the hardcopy documentation can be ordered by calling Visual
Numerics, Inc., at 303/447-7147.
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* Chapter 1: Introduction to PV-WAVE — Provides an
overview of the basic elements of the command language and
a brief discussion of its high-level features.

* Chapter 2: Constants and Variables — Introduces the
different types and structures of variables, constants, and
predefined system variables.

¢ Chapter 3: Expressions and Operators — Explains
expressions, which are one or more variables or constants
combined with operators. Expressions are the basic building
blocks of PV=WAVE.

* Chapter 4: Statement Types — Describes the syntax and
semantics of PV=WAVE statements, such as FOR and WHILE
loops, CASE statements, and assignments.

* Chapter 5: Using Subscripts — Describes how to use the
wide variety of subscript types, ranges, and arrays available
with PV=WAVE.

* Chapter 6: Working with Structures — Explains how to
define and use structures in PV=WAVE.

* Chapter 7: Working with Text — Discusses the system
routines used for string processing and gives examples.

e Chapter 8: Working with Data Files — Describes how to
read and write formatted and unformatted data files using the
traditional routines such as WRITEU, WRITEF, READU, and
READF. In addition, a collection of new routines, the
DC_READ_* and DC_WRITE_* functions, provide a greatly
simplified alternative to other methods of reading and writing
data. These routines are discussed in this chapter as well.

* Chapter 9: Writing Procedures and Functions — Explains
how to write your own PV=WAVE functions and procedures.
Topics such as error handling and parameter passing are
discussed.

* Chapter 10: Programming with PV-WAVE — Discusses
routines that are useful when programming PV=WAVE
applications.

Contents of this Programmer’s Guide xXiii



Chapter 11: Tips for Efficient Programming — Explains
ways to optimize programs written in the PV=-WAVE
language.

Chapter 12: Accessing the Operating System — Discusses
the ways in which you can manipulate environment variables,
logicals, and symbols from within PV=WAVE. In addition, the
SPAWN command is introduced as a way to execute external
programs from within PV=WAVE. Finally, ways to change the
current directory are discussed.

Chapter 13: Interapplication Communication —
Discusses a variety of methods for interapplication
communication. For example, PV=-WAVE can execute
external programs and exchange data with them. In addition,
external programs can call PV=WAVE to perform graphics,
data manipulation, and other functions.

Chapter 14: Getting Session Information — Describes how
to get information about the current PV=WAVE session.

Chapter 15: Using WAVE Widgets — Discusses how to
create a Motif or OPEN LOOK graphical user interface using
the WAVE Widgets functions.

Chapter 16: Using Widget Toolbox — Discusses how to
create a Motif or OPEN LOOK graphical user interface using
the Widget Toolbox functions.

Appendix A: FORTRAN and C Format Strings —
Discusses the format strings that you can use to transfer data to
and from PV-WAVE.

Appendix B: Motif and OLIT Widget Classes — Lists the
widget classes available under Motif and OLIT.

Appendix C: Motif and OLIT Callback Parameters —
Lists the required callback parameters for widget routines
under Motif and OLIT.

Appendix D: Widget Toolbox Cursors — Lists the standard
and custom cursors that are available for use with the WtCursor

function.
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Index — A multivolume index that includes references to the
PV=WAVE User’s Guide, PV=WAVE Programmer’s Guide, as
well as both volumes of the Reference.

Typographical Conventions

The following typographical conventions are used in this guide:

PV=WAVE code examples appear in this typeface.
For example:

PLOT, temp, s02, Title='Air Quality'

Code comments are shown in this typeface, below the com-
mands they describe. For example:

PLOT, temp, s02, Title='Air Quality'
This command plots air temperature data vs. sulphur dioxide
concentration.

Comments are used often in this reference to explain code
fragments and examples. Note that in actual PV=WAVE code,
all comment lines must be preceded by a semicolon (;).

PV=WAVE commands are not case sensitive. In this reference,
variables are shown in lowercase italics (myvar), function and
procedure names are shown in uppercase (XYOUTS), key-
words are shown in mixed case italic (X7itle), and system
variables are shown in regular mixed case type (! Version). For
better readability, all widget routines are shown in mixed case
(WwMainMenu).

A $ at the end of a PV=WAVE line indicates that the current
statement is continued on the following line. By convention,
use of the continuation character ($) in this document reflects
its syntactically correct use in PV=WAVE. This means, for
instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example,
the following lines would produce an error if entered literally
in PV=WAVE:

Typographical Conventions
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WAVE> PLOT, X, y, Title = 'Average $
Air Temperatures by Two-Hour Periods'
Note that the string is split onto two lines; an error message

is displayed if you enter a string this way.
The correct way to enter these lines is:

WAVE> PLOT, x, y , Title ='Average '+$
'Air Temperatures by Two-Hour Periods'
This is the correct way to split a string onto two command
lines.
The | symbol means “or” when used in a usage line. It is not to
be typed. For example, in the following command:

result = QUERY_TABLE(table,
' [Distinct] * | col; [alias] [, ..., col, [alias]] ...

the | means use either * or col; [alias] |, ..., col,, [alias]], but
not both.

Reserved words, such as FOR, IF, CASE, are always shown in
uppercase.

XXVi
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Customer Support

If you have problems unlocking your software or running the
license manager, you can talk to a Visual Numerics Customer Sup-
port Engineer. The Customer Support group researches and
answers your questions about all Visual Numerics products.

Please be prepared to provide Customer Support with the follow-
ing information when you call:

The name and version number of the product. For example,
PV=WAVE 4.2 or PV=-WAVE P&C 2.0.

Your license number, or reference number if you are an
Evaluation site.

The type of system on which the software is being run. For
example, Sun-4, IBM RS/6000, HP 9000 Series 700.

The operating system and version number. For example,
SunOS 4.1.3.

A detailed description of the problem.

The phone number for the Customer Support group is 303/530-
5200.

Customer Support
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Trademark Information
PostScript is a registered trademark of Adobe Systems, Inc.
QMS QUIC is a registered trademark of QMS, Inc.
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Introduction to the PV-WAVE
Command Language

This chapter introduces the basic features of the PV=WAVE Com-
mand Language.

Introduction to PV-WAVE

PV=WAVE is compatible with the most up-to-date hardware avail-
able on the market today.

PV-WAVE’s programming environment is versatile and its syntax
is easy to learn. PV=WAVE allows you to concentrate on special-
ized applications rather than on system design and routine
program development, therefore saving valuable time. Instant dis-
play of intermediate and final results, either in the form of graphs
or images, allows you to deal with the unexpected, to better inter-
pret complex data, and to create and debug programs in an
efficient manner.

Furthermore, PV=WAVE provides several ways for you to develop
applications with a “user-friendly” graphical user interface (GUI).




PV-WAVE Notation

PV=WAVE provides a set of data types and operations to represent
data with a natural notation and efficient representation. You can
easily define and use structures containing aggregate. PV=WAVE
variables, procedures, operators, and functions operate on scalar,
vector, and array data with no change in notation or meaning.

PV=WAVE borrows much of its semantics from the programming
language APL. The power and conciseness of PV=WAVE can be
attributed to this APL influence. The main advantages over APL
are syntax and control mechanisms plus visualization capabilities.

In the design of PV=WAVE, whenever there was a choice between
brevity (and perhaps obscurity) and verbosity, the most readable
alternative was selected.

Because scientists write their formulas using infix notation with
parentheses, PV=WAVE has an expression syntax that resembles
FORTRAN or BASIC, where operators are evaluated according to
precedence and left-to-right sequence.

PV-WAVE Libraries

Libraries of procedures and functions written in PV=WAVE are
already available. You can create new ones using a text editor. Ref-
erences to functions and procedures contained in library
directories extract, compile, and execute the program unit without
interruption. A number of procedures and functions written by
PV=WAVE users are included in the Standard Library, which is
tested, supported, and distributed with PV=WAVE. There are also
additional unsupported, untested user routines in the Users’
Library that may prove useful as you develop your applications.
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Extensive Error Checking

As with any well-designed interactive language or system, exten-
sive error checking and informative error messages are provided.
The type of error and the associated variable are printed in an
understandable format, without error codes or cryptic messages.
You can stop a program that is running at any time and look at or
change intermediate values. You can then resume the suspended
program from the point of interruption.

Data Types

The following are the basic data types that PV=WAVE variables
may have:

* Byte — An eight-bit unsigned integer ranging in value from
0 to 255. Pixels in images are commonly represented as byte
data.

* Integer — A 16-bit signed integer ranging from -32,768 to
+32,767.

* Longword (Long Integer) — A 32-bitsigned integer ranging
in value from approximately minus two billion to plus two bil-
lion.

* Floating Point — A 32-bit single-precision number in the
range of 1038, with 7 decimal places of significance.

*  Double Precision — A 64-bit double-precision number in the
range of +1038, with 14 decimal places of significance.

* Complex — A real-imaginary pair of single-precision float-
ing numbers.
* String — A sequence of characters, from 0 to 32,767 charac-

ters in length. This data type is used to transfer alphanumeric
strings as well as date/time data for calendar-based analysis.

* Structure — An aggregation made from the basic data types,
other structures, and arrays. Date/time data is handled inter-
nally as a structure.

Data Types



Note

Some other terms used in PV=WAVE include:

*  Scalars are a single instance of one of the data types, exclud-
ing structures.

* Arrays contain multiple elements of the same data type.
* Vectors are one-dimensional arrays.

e Elements in an array are addressed using subscripts and sub-
script ranges. For more information about array subscripts, see
Chapter 5, Using Subscripts and Matrices.

Constants and Variables

Constants and variables are the primary elements used with oper-
ators and expressions to mathematically manipulate data inside
PV-WAVE programs.

Numeric and String Constants

A constant is a value that does not change during the execution of
a program. PV=WAVE employs two types of constants: numeric
and string. Numeric constants are defined by six data types: byte,
integer, longword, single-precision floating-point, double-preci-
sion floating-point, and complex. For a complete description of
numeric constants, see Numeric Constants on page 18.

String constants consist of characters enclosed by single quotes (')
or by double quotes ("). The value of the constant is defined by the
characters delimited by the single quotes or double quotes. See
String Constants on page 21 for examples of valid and invalid
string constants.

Variables
A variable is a named entity belonging to a data type that may
assume any number of values. For example:
A =6
B = 'This is a quote'
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A is avariable that is assigned a numeric value of 6. B is a variable
that represents the string value, “This is a quote”. A variable can

be either a scalar or an array of one of the seven data types. For a
description of the basic features of variables, refer to Attributes of
Variables on page 23 and Names of Variables on page 25.

Variable Declaration

One important advantage that PV=WAVE has over program lan-
guages such as C and FORTRAN is that you do not need to declare
variables. When a variable is assigned a value, it is automatically
declared as a specific data type. In the examples above, A is auto-
matically classed as an integer data type, and B is classed as a
string data type.

System Variables

Besides variables assigned by you — user-defined variables —
PV=-WAVE also supports a special class of system variables. The
names of these variables always begin with an exclamation point
(). For example, there is a system variable that contains the value
for m, called !Pi. You can see its value by entering:

PRINT, !Pi
3.14159

Variable names are not case sensitive. So !PI, !Pi, or !pi all
refer to the same entity.

Each system variable belongs to a predefined data type which can-
not be altered. Some system variables such as !Pi are read only,
that is, their value cannot be changed. However, most system vari-
ables have a default value which you can change. You can also
create your own system variables by using the PV=WAVE Stan-
dard Library routine DEFSYSYV described in the PV=-WAVE
Reference. For more information on system variables, see System
Variables on page 26.
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Expressions and Operators

Expressions

Operators

When variables and constants are combined using operators,
expressions are created. Expressions and operators are briefly
described in the following subsections.

Expressions use operators to evaluate combinations of variables
and constants. Expressions can also be combined with other
expressions to create even more complex expressions. Unlike
FORTRAN or BASIC expressions, PV=WAVE expressions work
equally well on variables that contain scalar, one-, two-, or multi-
dimensional data. Here are few examples of expressions using var-
ious operators:

c+1
SIN(A * 4)

A/ 2

z > 9-2

(X LE 70) AND (X GE 35)

Note that expressions can also consist of functions (e.g., SIN) in
addition to operators. Like constants and variables, expressions
also have a data type and structure. See Type and Structure of
Expressions on page 34 for more information.

PV=WAVE employs several types of operators within expressions.

The presence of parentheses can affect the order in which numeric,
relational, Boolean, and string operators are executed.
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Numeric Operators

These operators, discussed in detail in PV-WAVE Command Lan-
guage Operators on page 44, are summarized in the following
table:

Table 1-1: Numeric Operators

Operator Meaning
- Unary minus
" Exponentiation
* Multiplication
# Matrix multiplication
/ Division
+ Addition
- Subtraction
MOD Modulo operator

Boolean Operators

These operators, discussed in detail in Boolean Operators on page
43, are summarized in the following table:

Table 1-2: Boolean Operators

Operator Meaning
NOT Negation
AND Union
OR Intersection
XOR Mutual exclusivity

Expressions and Operators 7



Relational Operators

These operators, discussed in detail on Relational Operators on
page 41, are summarized in the following table:

Table 1-3: Relational Operators

Operator Meaning
EQ Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Less than or equal to
LT Less than
< Comparison to find minimum
> Comparison to find maximum

String Operators

These operators, discussed in detail in Concatenating Strings on
page 123, are summarized in the following table:

Table 1-4: String Operators

Operator Meaning
+ String concatenation
ort” String delineation

Array Concatenation Operator

The array operator, [ ], is discussed on PV-WAVE Command Lan-
guage Operators on page 44.
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Statements

Assignment

IF

FOR

The syntax of PV=WAVE statements is deliberately simple. The
13 types of statements should be familiar to anyone with a knowl-
edge of FORTRAN or C.

The 13 statement types (with key words shown in capital letters)
are summarized in the following subsections.

var = expression

Assigns the value of the expression to the variable. This is the sim-
plest form of the assignment statement. For more information, see
Assignment Statement on page 53.

IF expr THEN statement
IF expr THEN statement ELSE statement

Conditionally executes statements depending on the value of the
expression. For more information, see IF Statement on page 70.

FOR var = init_expr, limit, [step] DO statement

Initializes the control variable to init_expr, repeatedly executes the
statement, and increments the control variable until it is larger than
the limit expression. The optional step value explicitly specifies an
increment (either positive or negative) for the index. This is the
general form of the FOR statement. For more details, see FOR
Statement on page 65.

Statements



WHILE

REPEAT

CASE

GOTO

Block

WHILE expr DO statement

Repeatedly executes the statement while the value of the expres-
sion is true. For more information, see WHILE Statement on page
78.

REPEAT statement UNTIL expr

Repeatedly executes the statement until the expression is true. For
more information, see REPEAT Statement on page 77.

CASE expr OF
expr: statement... END

Selects one of many statements for execution depending on the
value of the expression. For details, see CASE Statement on page
62.

GOTO, label
label:

Transfers control to the statement with the designated label. For
more information, see GOTO Statement on page 70.

BEGIN
statement
statement

END

10
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Procedure Call

A compound statement composed of one or more statements. For
more information, see Blocks of Statements on page 60.

procedure_name, parameter_list

Calls a system or user-written procedure with the given parame-
ters. Unlike function calls, procedure parameters are not placed in
parentheses. For more information, see Procedure Call Statement
on page 73.

Procedure Definition

Function Call

PRO name, parameter_list

Defines the start of a user-written procedure. For more informa-
tion, see Procedure Definition Statement on page 76.

result = function_name(parameters)

Calls a system or user-written function with a given parameter or
parameters. For more information, see Procedure or Function
Calling Mechanism on page 248.

Function Definition

FUNCTION name, parameter_list

Begins the definition of a user-written function. For details, see
Function Definition Statement on page 68.

Statements
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Common Block Definition

COMMON name, variable_list

Defines a group of variables that belong to a common block of
variables that are globally recognized. For more information, see
Common Block Definition Statement on page 63.

Input and Output

Almost any type of data, in either formatted or unformatted form,
can be read or written by PV=WAVE. The command language
allows most of the different forms of I/O supported by VAX/VMS.
Sequential, relative, and indexed (ISAM) file organizations (with
sequential, random access by key, and random access by file
address methods) are available.

All of PV=WAVE’s basic data types can be transferred in and out
of files. Also, Date/Time formatted data can be transferred using
the string data type.

Besides reading from standard input and output, PV=WAVE also
can read from or write to a file. There are three basic steps for read-
ing from or writing to a file:

QO Open the file with an associated logical unit number (LUN).
O Read from or write to the file.

O Close the file.

The first and final steps are unnecessary when using any 1/0 func-
tion that begins with the “DC” prefix. The DC functions are
introduced in the section, I/O Functions for Simplified Data Con-
nection on page 13.

Table 1-5 summarizes the procedures used to open and read files.
For a complete discussion of how to transfer data, see Chapter 8,

12
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Working with Data Files, which discusses PV=WAVE input/output
and presents numerous examples.

Table 1-5: Input/Output Procedures

Procedure Description

OPENR Opens an existing file for reading.

OPENW Opens a new file for writing.

OPENU Opens an existing file for reading and writing.

READF Reads data from a file into variables. If no For-
mat keyword has been defined, PV=WAVE
uses its default rules for formatting the data.

PRINTF Writes data to a file. If no Format keyword has
been defined, PV=WAVE uses its default rules
for formatting the data.

READU Reads unformatted binary data from a file into
a variable.

WRITEU Writes unformatted binary data from an

expression into a file.

/O Functions for Simplified Data Connection

Any PV-WAVE I/O function that begins with the two letters “DC”
automatically handles the opening and closing of the file unit. This
group of functions has been provided to simplify the process of

getting your data in and out of PV=WAVE.

These functions are easy to use because they automatically handle
many aspects of data transfer, such as opening and closing the data
file. Also, they recognize C-style formatting tokens, whereas the

Input and Output
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procedures listed in the previous table only recognize FORTRAN-
style format codes. Here is a list of the DC functions:

Table 1-6: DC Functions

Function Description

DC_WRITE_FIXED Write (or read) formatted data to (or
DC_READ_FIXED from) a file without having to explicitly
choose a LUN. You use the Format key-
word to provide the FORTRAN or C for-
mat string that is used to transfer the

data.
DC_WRITE_FREE Write (or read) formatted data to (or
DC_READ_FREE from) a file without having to explicitly

choose a LUN. You do not have to pro-
vide a FORTRAN or C format string to
transfer the data.

DC_WRITE_8_BIT Write (or read) unformatted 8-bit data to
DC_READ_8_BIT (or from) a file without having to explic-
itly choose a LUN.

DC_WRITE_24_BIT Write (or read) unformatted 24-bit data
DC_READ_24_BIT to (or from) a file without having to
explicitly choose a LUN.

DC_WRITE_TIFF Write (or read) TIFF image data. You do
DC_READ_TIFF not have to explicitly choose a LUN.

For more information about the DC functions, see Functions for
Simplified Data Connection on page 153 and the PV=WAVE Refer-
ence.

Functions and Procedures

Procedures and functions are programs that define specific tasks.
You define procedures and functions in files using your text editor
or create files directly at the WAVE> prompt. See Creating and
Running Programs Interactively on page 25 of the PV-WAVE
User’s Guide and Using a Text Editor to Create and Run Programs
on page 19 of the PV=WAVE User s Guide for details.

14
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Definition Syntax

The syntax for creating a procedure is:

PRO procedure_name [Param,, Param,, Paramj]

END

The syntax for creating a function is:

FUNCTION function_name [Param;, Paramj, Paramj |

RETURN, expression
END

For more information about creating procedures and functions, see
Procedure and Function Parameters on page 234.

For information on saving compiled procedures in files, see Using
PV-WAVE in Runtime Mode on page 41 of the PV=WAVE User's
Guide.

Usage Syntax

The syntax for using a procedure is:
procedure_name [, paramj, param, ..., param,, |
The syntax for using a function is:

result = function_name(param [, param,, ..., param,])
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Where to Find PV-WAVE’s Libraries

PV=WAVE’s supported library routines are located in the directory
$WAVE_DIR/1ib/std (UNIX)or WAVE_DIR: [LIB.STD]
(VMS). You can also create your own routines and add them to the
library, or create your own library. (In fact, creating your own
library is recommended so your routines aren’t lost when you
upgrade to a new version of PV=WAVE .) The standard library
routines are summarized in Chapter 1, Functional Summary of
Routines, in the PV=WAVE Reference.

The standard library contains the subdirectories motif and
olit. The motif directory contains the standard WAVE
Widgets routines for Motif, and the o1it directory contains
the OPEN LOOK WAVE Widgets. For information on WAVE
Widgets, see Chapter 15, Using WAVE Widgets.

Another subdirectory of the Standard Library is the guitools
directory. This directory contains an assortment of graphical user
interface (GUI) routines. These routines perform color table mod-
ifications, display surface views, display and manipulate iso-
surfaces, and provide access to a variety of other functions. The
GUI routines all begin with Wg (e.g., WgSurfaceTool) and are
described in the PV=WAVE Reference.

An unsupported user library ($WAVE_DIR/1ib/user (UNIX)
or WAVE_DIR: [LIB.USER] (VMS))is also included in the
PV=WAVE distribution. This library contains such entries as rou-
tines for compressing images, making pie charts, creating 2D/3D
bar graphs, and displaying 3D scatterplots. For information on
adding routines to the library, see Submitting Programs to the
Users’ Library on page 255. The routines in the user library are
not documented in the PV=WAVE documentation set. For infor-
mation on a routine in the user library, read the header of the . pro
file for that routine.
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Constants and Variables

Constants and variables are the building blocks that are combined
with operators and functions to produce results. A constant is a
value that does not change during the execution of a program. A
variable is a location with a name that contains a scalar or array
value. During the execution of a program or an interactive termi-
nal session, numbers, strings, or arrays may be stored into
variables and used in future computations.

Constants

The data type of a constant is determined by its syntax, as
explained later in this section.

In PV=-WAVE there are seven basic data types, each with its own
form of constant:

* Byte — 8-bit unsigned integers.

* Integer — 16-bit signed integers.

* Longword — 32-bit signed integers.

» Floating-Point — 32-bit single-precision floating-point.

* Double-Precision — 64-bit double-precision floating-point.
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* Complex — Real-imaginary pair using single-precision float-

ing-point.

* String — Zero or more eight-bit characters which are inter-
preted as text.

In addition, structures are defined in terms of the seven basic data
types. Chapter 6, Working with Structures, describes the use of
structures in detail.

Numeric Constants

This section discusses the different kinds of numeric constants in
PV=WAVE and their syntax. The types of numeric constants are:

* Integer constants.

* Floating-point and double-precision constants.

* Complex constants.

Integer Constants

Numeric constants of different types may be represented by a
variety of forms. The syntax of integer constants is shown in
Table 2-1, where “n” represents one or more digits.

Table 2-1: Syntax of Integer Constants

Radix Type Form Examples
Decimal Byte nB 12B, 34B
Integer n 12, 425
Long nL 12L, 94L
Hexadecimal Byte 'n'xXB '2E'XB
Integer 'n'X 'OF'X
Long 'n'XL 'FF'XL
Octal Byte "nB "12B
Integer 'n "12
'n'o '377'0
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Table 2-1: Syntax of Integer Constants

Radix Type Form Examples
Long ‘nL "12L
'n'OL '777777'0L

Digits in hexadecimal constants may include the letters A through
F, for the decimal numbers 10 through 15. Also, octal constants
may be written using the same style as hexadecimal constants by
substituting an O for the X. Table 2-2 illustrates both examples of
valid and invalid PV=WAVE constants.

Table 2-2: Examples of Integer Constants

Correct Incorrect Reason
255 256B Too large, limit is 255
'123'L '123L Unbalanced apostrophe
"123 '03G'x Invalid character
'27'0L '27'L No radix
'650"'XL 650XL No apostrophes
"124 "129 9 is an invalid octal digit

Caution '

Values of integer constants can range from 0 to 255 for bytes, 0 to
+ 32,767 for integers, and 0 to + (23! — 1) for longwords. Integers
that are initialized with absolute values greater than 32,767 are
automatically typed as longword. Any numeric constant may be
preceded by a + or a — sign.

There is no checking for integer overflow conditions when per-
forming integer arithmetic. For example, the statement:

print, 32767 + 10

will give an incorrect answer and no error message. For more
details on overflow conditions and error checking, see Chapter 10,
Programming with PV-WAVE.

Constants
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Floating-point and Double-precision Constants

Floating-point and double-precision constants may be expressed
in conventional or scientific notation. Any numeric constant that
includes the decimal point is a floating-point or double-precision
constant.

The syntax of floating-point and double-precision constants is
shown in Table 2-3. The notation sx represents the sign and mag-
nitude of the exponent, for example: E-2.

Double-precision constants are entered in the same manner,
replacing the E with a D. For example, 1.0DO0, 1D, 1.D, all rep-
resent a double precision one.

Table 2-3: Syntax of Floating-point Constants

Form Example

n. 102.

.n .102

n.n 10.2

n Esx 10E5

n .Esx 10.E-3

.n Esx AE+12

n .n Esx 2.3E12

Complex Constants

Complex constants contain a real and an imaginary part, both of
which are single-precision floating-point numbers. The imaginary
part may be omitted, in which case it is assumed to be zero.

The form of a complex constant is:
COMPLEX(real_part, imaginary_part)
or:

COMPLEX(real_parf)

PV=WAVE Programmer’s Guide for Advantage and CL



For example, COMPLEX (1, 2), is a complex constant with a
real part of one, and an imaginary part of two. COMPLEX (1)is a
complex constant with a real part of one and a zero imaginary
component.

The ABS function returns the magnitude of a complex expression.
To extract the real part of a complex expression, use the FLOAT
function; to extract the imaginary part, use the IMAGINARY
function. These functions are explained in the PV=WAVE Refer-
ence.

String Constants

A string constant consists of zero or more characters enclosed by
apostrophes (') or quotation marks (" ). The value of the constant
is simply the characters appearing between the leading delimiter
('or ") and the next occurrence of the delimiter.

A double apostrophe ('') or double quotation mark (" ") is con-
sidered to be the null string; a string containing no characters.

An apostrophe or quotation mark may be represented within a
string that is delimited by the same character, by two apostrophes,
or quotation marks.

For example, 'Don’' 't ' produces Don ' t; or you can write:
"Don't" to produce the same result.

Table 2-4 illustrates valid string constants and Table 2-5 illustrates
invalid string constants.

In the last entry of Table 2-5, "129" is interpreted as an illegal
octal constant. This is because a quotation mark character fol-
lowed by a digit from O to 7 represents an octal numeric constant,
not a string, and the character 9 is an illegal octal digit.
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Table 2-4: Examples of Correct String Constants

»

String Value Correct
Hi there 'Hi there'
Hi there "Hi there"
Null String v
I'm happy "I'm happy"
I'm happy 'I''m happy'
counter 'counter’
129 '129"
Table 2-5: Examples of Incorrect String Constant
String Value Incorrect Reason
Hi there '"Hi Mismatched delimiters
there"
Null String ' Missing delimiter
I'm happy 'I'm Apostrophe in string
happy'
counter ! Double apostrophe is null
'counte | string
ro
129 "129" lllegal octal constant

Representing Non-printable Characters

The ASCII characters with values less than 32 or greater than 126
do not have printable representations. Such characters are
included in string constants by specifying their octal or hexadeci-
mal values. A character is specified in octal notation as a backslash
followed by its three-digit octal value, and in hex as a backslash
followed by the x or X character, followed by its two-digit hexa-
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decimal value. In order to construct a character string which
actually contains a literal backslash character, it is necessary to
enter two consecutive backslash characters. Table 2-6 gives exam-
ples of using octal or hexadecimal character notation.

Table 2-6: Specifying Non-printing Characters

Specified String Actual Contents Comment

"\033[;H\03 '<Esc>[;H<Esc>[2J' | Erase ANSI terminal
3[2J3"
"\x1B[;H\X1 | '<Esc>[;H<Esc>[2J' | Erase — hex notation
b[2J'

'\007"' Bell Ring the bell
"\x08"' Backspace Move cursor left
‘\014" Formfeed Eject current page
‘\\hello' \helio' Literal backslash

Variables

Variables are named repositories where information is stored. A
PV-WAVE variable may contain a scalar, vector, multidimen-
sional array, or structure of virtually any size. Arrays may contain
elements of any of the seven basic PV=WAVE data types plus
structures. Variables may be used to store images, spectra, single
quantities, names, tables, etc.

Attributes of Variables

Note '

Every variable has a structure and a type, which can change
dynamically during the execution of a program or terminal ses-
sion.

The dynamic nature of PV=WAVE variables may seem unusual to
you if you are used to strongly typed languages such as PASCAL.
For example, in PV=WAVE you can write a valid statement that

Variables
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assigns a scalar variable to an array variable, or a string variable to
an array variable.

Structure of Variables

A variable may contain either a single value (a scalar), or it may
contain a number of values of the same type (an array). Note that
one-dimensional arrays are often referred to as vectors in the
PV=-WAVE documentation. Strings are considered a single value
and a string array contains a number of fixed-length strings. A sin-
gle instance of a structure is considered a scalar.

In addition, a variable may associate an array structure with a file;
these variables are called associated variables. Referencing an
associated variable causes data to be read from or written to the
file. Associated variables and the related ASSOC function are
described in Chapter 8, Working with Data Files, and in the
PV=WAVE Reference.

Type of Variables

Note

A variable may have one and only one of the following types:
undefined, byte, integer, longword, floating-point, double-
precision floating-point, complex floating-point, string, or struc-
ture.

When a variable appears on the left-hand side of an assignment
statement its attributes are copied from those of the expression on
the right-hand side. For example, the statement:

ABC = DEF

redefines or initializes the variable ABC with the attributes and
value of variable DEF. Attributes previously assigned to the vari-
able are destroyed.

This is an example of PV=WAVE’s loose data typing. This aspect
of PV=WAVE may be confusing to programmers who are used to
strongly typed languages where such an assignment statement
would produce an error.
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Names of Variables

Initially, every variable has the single attribute of undefined.
Attempts to use undefined variables result in an error.

PV-WAVE variables are named by identifiers that have the follow-
ing characteristics:

Each identifier must begin with a letter and may contain from
one to 31 characters.

The second and following characters may be a letter, digit, the
underscore character, or the dollar sign.

A variable name may not contain embedded spaces, because
spaces are considered to be delimiters.

Characters after the first 31 are ignored.

Names are case insensitive, lowercase letters are converted to
uppercase; so the variable name abc is equivalent to the name
ABC.

A variable may not have the same name as a function or
reserved word. This will result in a syntax error. The following
are reserved words:

AND BEGIN CASE
COMMON DO ELSE
END ENDCASE ENDELSE
ENDFOR ENDIF ENDREP
ENDWHILE EQ FOR
FUNCTION GE GOTO
GT IF LE

LT MOD NE

NOT OF ON_IOERROR
OR PRO REPEAT
THEN UNTIL WHILE
XOR

Variables
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System Variables

The following table illustrates examples of valid and invalid vari-
able names.

Table 2-7: Examples of Variable Names

Correct Incorrect Reason
A EOF Conflicts with function name
A6 6A Doesn't start with a letter
INIT_STATE _INIT Doesn't start with a letter
ABCSDEF ABQ@ lllegal character, @
My variable | ab cd Embedded space

System variables are a special class of predefined variables, avail-
able to all program units. Their names always begin with the
exclamation mark character !. System variables are used to set the
options for plotting, to set various internal modes, to return error
status, and perform other functions.

System variables have a predefined type and structure which can-
not be changed. When an expression is stored into a system
variable, it is converted to the type of the variable if necessary and
possible.

Certain system variables are read only, and their values may not be

changed. You may define new system variables with the DEF-
SYSV and the ADDSYSVAR procedures.

Examples of system variable references are:

’

!Prompt = ’'Good Morning:
Change the standard WAVE> prompt to a new string.

A = 1C
Store value of the cursor system variable !C in A.

PRINT, ACOS(a) * !Radeg
Use !Radeg, a system variable that contains a radians-to-
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degrees conversion factor, to convert radians to degrees.

!P.Title = ’'Cross Section’
Set default plot title. !P is a structure, in which Title is a field.

If an error message appears that refers to the system variables !D,
IP, !X, Y, or !Z, the error message will contain an “expanded”
name for the system variable. The “expanded” names of these sys-
tem variables are:

e Device for |D
* Plot for 'P
e Axisfor !X, 'Y, and !Z

The following table summarizes the system variables. For detailed
information on each system variable, see Chapter 4, System Vari-
ables, in the PV=WAVE Reference.

Table 2-8: Summary of System Variables

Name Type Purpose
IC long Returns subscript of element found
by MAX or MIN.
D structure | (Read only) Contains information

on current plotting device.

Date_Separator | string Lets you change the default charac-
ter (/) used to separate the parts of a
date. Used for date to string conver-

sion.
IDay_Names string An array of strings containing the
names of the days of the week.
IDir string Contains name of the main directory.
\Dpi double (Read only) Contains double-

precision value of x.

IDT_Base DT Contains the value of Julian Day 1
(September 14, 1752) as PV=WAVE
Date/Time data.

IDtor float (Read only) Converts degrees to
radians (x / 180).
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Table 2-8: Summary of System Variables

Name Type Purpose

IEdit_Input integer Enables/disables keyboard line
editing.

Err long Contains code of last I/O error
message.

IErr_String string (Read only) Contains text of last I/O
error message.

IFeature_Type string (Read only) Indicates whether
PV-WAVE is in runtime or interactive
mode.

Holiday_List DT Contains an array of up to 50 Date/

Time structures that represent holi-
days created by the procedure
CREATE_HOLIDAY. This system
variable does not have a default

value.

IJournal long (Read only) Logical unit number of
journal output, or 0.

ILang string Identifies the language currently
being used. The default is “ameri-
can”.

!Month_Names string An array of strings containing the
names of the months.

IMsg_Prefix string Contains prefix string for error
messages.

10rder long Indicates direction of image transfer:
bottom up (0), or top down (1).

P structure | Contains the plotting system
variables.

Path string Contains the search path for

procedures and functions.

IPDT structure | Contains the system variables for
plotting Date/Time axes.

IPi float (Read only) Contains the floating-
point value of =.
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Table 2-8: Summary of System Variables

Type

Purpose

IProduct

string

(Read only) Identifies the product
being run: either “cl” or “advantage”.

IPrompt

string

Contains prompt string used by
PV=WAVE.

!Quarter_Names

string

An array of four strings containing
the following values by default: ‘Q1’,
‘Q2’, ‘Q3’, and ‘Q4’.

1Quiet

integer

Suppresses compiler messages on
screen.

IRadeg

float

(Read only) Converts radians to
degrees (180 / ).

IStart

DT

Contains the value of the date and
time PV=WAVE was started.

ITime_Separator

string

Lets you change the default charac-
ter (:) used to separate the parts of a
time representation. Used for time
to string conversion.

Wersion

structure

(Read only) Contains the current
version number of PV=WAVE, oper-
ating system, architecture, and plat-
form.

IWeekend_List

long

An array of seven long integers. Ele-
ment zero (0) represents Sunday,
and so on. The value of an element
is zero (0) if the day is a weekday,
and one (1) if it is a weekend day or
a holiday. The CREATE_WEEKEND
procedure builds this variable. This
system variable does not have a
default value.

structure

Axis variables for the X axis.

structure

Axis variables for the Y axis.

structure

Axis variables for the Z axis.

Variables
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Expressions and Operators

Variables and constants may be combined, using operators and
functions, into expressions. Expressions are constructs that spec-
ify how results are to be obtained. Expressions may be combined
with other expressions, variables, and constants to yield more
complex expressions. Unlike FORTRAN or BASIC expressions,
PV=-WAVE expressions may be scalar or array-valued.

There are a great variety of operators in PV=WAVE. In addition to
the standard operators — addition, subtraction, multiplication,
division, exponentiation, relations (EQ, NE, GT, etc.), and Bool-
ean arithmetic (AND, OR, NOT and XOR) — operators exist to
find minima and maxima, select scalars and subarrays from arrays
(subscripting), and to concatenate scalars and arrays to form
arrays.

Functions, which are operators in themselves, perform operations
that are usually of a more complex nature than those denoted by

simple operators. Functions exist in PV=WAVE for data smooth-
ing, shifting, transforming, evaluation of transcendental functions,
etc. For a complete description of all PV=WAVE functions, see the
PV=WAVE Reference.
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Expressions may be arguments to functions or procedures. For
example:

SIN(A * 3.14159)

evaluates expression A multiplied by the value of mt and then
applies the trigonometric sine function. This result may be used as
an operand to form a more complex expression or as an argument
to yet another function. For example:

EXP(SIN(A * 3.14159))

sin . a
evaluatestoe .

Operator Precedence

PV=-WAVE operators are divided into the levels of algebraic pre-
cedence found in common arithmetic. Operators with higher
precedence are evaluated before those with lesser precedence, and
operators of equal precedence are evaluated from left to right.
Operators are grouped into five classes of precedence as shown in
the following table:

Table 3-1: Operator Precedence

Priority Operator

First (highest) * (exponentiation)

Second * (multiplication)

# (matrix multiplication)
/ (division)

MOD (modulus)

Third + (addition)

— (subtraction)

< (minimum)

> (maximum)

NOT (Boolean negation)
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Table 3-1: Operator Precedence

Priority Operator

Fourth EQ (equality)

NE (not equal)

LE (less than or equal)
LT (less than)

GE (greater than or equal)
GT (greater than)

Fifth AND (Boolean AND)
OR (Boolean OR)
XOR (Boolean exclusive OR)

For example, the expression:
4 + 5 * 2

yields 14 because the multiplication operator has a higher prece-
dence than the addition operator. Parentheses may be used to
override the default evaluation:

(4 +5) * 2

yields 18 because the expression inside the parentheses is evalu-
ated first. A useful rule of thumb is when in doubt, parenthesize.
Some examples of expressions are:

A
The value of variable A.
A+ 1
The value of A plus 1.
A<2+1
The smaller of A or 2, plus 1.
A< 2 *3
The smaller of A and 6; The multiplication operator () has a
higher precedence than the minimum operator (<).
2 * SQRT(A)

Twice the square-root of A.
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A + ’'Thursday’

The concatenation of the strings A and ‘Thursday’. An error will
result if A is not a string.

Type and Structure of Expressions

Not

Every entity in PV=WAVE has an associated type and structure.
The seven atomic data types, in decreasing order of complexity
are:

* Complex floating-point
*  Double-precision floating-point
*  Floating-point

* Longword integer

* Integer
* Byte
e String

The structure of an expression may be either a scalar or an array.
The type and structure of an expression depend upon the type and
structure of its operands.

Unlike many other languages, the type and structure of expres-
sions in PV=WAVE cannot be determined until the expression is
evaluated. Because of this, care must be taken when writing pro-
grams. For example, a variable may be a scalar byte variable at one
point in a program, while at a later point it may be set to a complex
array.

PV-WAVE attempts to evaluate expressions containing operands
of different types in the most accurate manner possible. The result
of an operation becomes the same type as the operand with the
greatest precedence or potential precision. For example, when
adding a byte variable to a floating-point variable, the byte vari-
able is first converted to floating-point and then added to the
floating-point variable, yielding a floating-point result. When
adding a double-precision variable to a complex variable, the
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result is complex because the complex type has a higher position
in the hierarchy of data types.

When writing expressions with mixed types, caution must be used
to obtain the desired result. For example, assume the variable A is
an integer variable with a value of 5. The following expressions
yield the indicated results:

A/ 2
Evaluates to 2. Integer division is performed. The remainder is
discarded.

A/ 2.
Evaluates to 2.5. The value of A is first converted to floating-
point.

A/ 2+ 1.
Evaluates to 3. Integer division is done first because of operator
precedence. Result is floating-point.

A/ 2. +1
Evaluates to 3.5. Division is done in floating-point and then the
1 is converted to floating-point and added.

Note ' When other types are converted to complex type, the real part of
the result is obtained from the original value and the imaginary
part is set to zero.

When a string type appears as an operand with a numeric data
type, the string is converted to the type of the numeric term. For
example:

'123' + 123.0
is 246.0,
'123.333' + 33

results in a conversion error because 123.333 is not a valid integer
constant. In the same manner, 'ABC' + 123 also causes a
conversion error.
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Type Conversion Functions

PV=WAVE provides a set of functions that convert an operand to
a specific type. These functions are useful in many instances, such
as forcing the evaluation of an expression to a certain type, output-
ting data in a mode compatible with other programs, etc. The
conversion functions are shown in the following table.

Table 3-2: Type Conversion Functions

Function Description
STRING Convert to string
BYTE Convert to byte
FIX Convert to integer
LONG Convert to longword integer
FLOAT Convert to floating-point
DOUBLE Convert to double-precision floating-point
COMPLEX Convert to complex value

For example, the result of the expression FIX (A) is of single-
precision (16-bit) integer type with the same structure (scalar or
array) as the variable. The variable may be of any type. These con-
version functions operate on data of any structure: scalars, vectors,
or arrays. If A lies outside the range of single-precision integers (-
32,768 to +32,767) an error will result.

Not all implementations of PV=WAVE check for overflow in type
conversions. In particular, the Sun version of PV=WAVE, and
other versions based on the Motorola 68000 computer do not. For
example, in the Sun implementation, the statement:

PRINT, FIX(66000)

prints the value 464, which is 66000516, with no indication that an
error occurred. The FINITE and CHECK_MATH functions test
floating-point results for valid numbers, and check the accumu-
lated math error status respectively. See Chapter 10, Programming
with PV-WAVE, for details on these error-checking functions.
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The statement:

A = FLOAT(A)
is perfectly legitimate in PV=WAVE; its effect is to force the vari-
able A to have floating-point type.

Special cases of type conversions occur when converting between
strings and byte arrays. The result of the BYTE function applied
to a string or string array is a byte array containing the ASCII
codes of the characters of the string. Converting a byte array with
the STRING function yields a string array or scalar with one less
dimension than the byte array.

The following table shows examples of conversion on functions.

Table 3-3: Examples of Conversion Functions

Example Result
FLOAT (1) 1.0
FIX(1.3 + 1.7) 3
FIX(1.3) + FIX(1.7) 2
BYTE(1.2) 1
BYTE (-1) 255 (Bytes are modulo 256)
BYTE( '01ABC') [48,49,65,66,67]
STRING([65B,66B,67B]) | ABC
FLOAT (COMPLEX (1, 2)) 1.0
COMPLEX([1, 2],[4, 5]) | [COMPLEX(1,4),COMPLEX(2,5)]

Extracting Fields

When called with more than a single parameter, the BYTE, FIX,
LONG, FLOAT and DOUBLE functions create an expression of
the designated type by extracting fields from the input parameter
without performing type conversion. The result is that the original
binary information is simply interpreted as being of the new type.
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This feature is handy for extracting fields of data of one type
embedded in arrays or scalars of another type.

The general form of the type conversion functions is:
CONV_FUNCTION(expression, offset [, dim,, ..., dim,])
Where:

CONV_FUNCTION is the name of one of the conversion func-
tions listed previously. '

expression — An array or scalar expression of any type from
which the field is to be extracted.

offset — Starting byte offset within expression of the field to be
extracted. Zero is the first byte.

dim,, ..., dim,, — The dimensions of the result. If these dimen-
sions are omitted, the result is a scalar. If more than two
parameters appear, the third and following parameters are the
dimensions of the resulting array.

For example, assume file unit 1 is open for reading on a file con-
taining 112-byte binary records containing the fields shown
below:

Table 3-4: Example Fields in Open File

Bytes Type Name
0-7 Double Time
8 Byte Type
9-10 Integer Count
11 -110 Floating DATA (20-by-5 array)
111 Byte Quality

The following program segment will read a record into an array
and extract the fields.

A = BYTARR(112)
Define array variable to contain record, 112 bytes.
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READU, 1, A
Read the next record.

TIME = DOUBLE(A, 0)
Extract TIME. Offset = 0, double-precision.

TYPE = BYTE(A, 8)
Extract TYPE. Starting offset is 8.

COUNT = FIX(A, 9)
Count, offset = 9, integer.

DATA = FLOAT(A, 11, 20, 5)
DATA = floating array, dimensions of 20-columns by 5-rows,
starting offset is 11 bytes.

QUALITY = BYTE(A, 111)
Last field, single byte.

Structure of Expressions

PV-WAVE expressions may contain operands with different struc-
tures, just as they may contain operands with different types.
Structure conversion is independent of type conversion. An
expression will yield an array result if any of its operands is an
array as shown in the following table:

Table 3-5: Structure of Expressions

Operands Result
Scalar : Scalar Scalar
Array : Array Array
Scalar : Array Array
Array : Scalar Array

Seven functions exist to create arrays of the seven types:
BYTARR, INTARR, LONARR, FLTARR, DBLARR,
COMPLEXARR, and STRARR. The dimensions of the desired
array are the parameters to these functions. The result of
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FLTARR(5) is a floating-point array with one dimension, a vec-
tor, with five elements initialized to zero. FLTARR (50, 100) is
a two-dimensional array, a matrix, with 50 columns and 100 rows.

The size of an array-valued expression is equal to the smaller of its
array operands. For example, adding a 50-point array to a 100-
point array gives a 50-point array, the last 50 points of the larger
array are ignored. Array operations are performed point-by-point
without regard to individual dimensions. An operation involving a
scalar and an array always yields an array of identical dimensions.
When two arrays of equal size (number of elements) but different
structure are operands, the result is of the same structure as the first
operand.

For example:
FLTARR(4) + FLTARR(1, 4)
yields FLTARR(4).

In the above example, a row vector is added to a column vector
and a row vector is obtained because the operands are the same
size causing the result to take the structure of the first operand.

Here are some examples of expressions involving arrays:

ARR + 1

Is an array in which each element is equal to the same element
in ARR plus 1. The result has the same dimensions as ARR. If
ARR is byte or integer the result is of integer type, otherwise the
result is the same type as ARR.

ARR1 + ARR2
Is an array obtained by summing two arrays.

(ARR < 100) * 2
Is an array in which each element is set to twice the smaller of
either the corresponding element of ARR or 100.

EXP(ARR / 10.)
Is an array in which each element is equal to the exponential of
the same element of ARR divided by 10.

ARR * 3. / MAX(ARR)
Is an inefficient way of writing the following line:
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ARR * (3. / MAX(ARR))
The more efficient way.

In the inefficient example above, each point in ARR is multiplied
by 3 and then divided by the largest element of ARR. (The MAX
function returns the largest element of its array argument.) This
way of writing the statement requires that each element of ARR be
operated on twice. If (3. / MAX(ARR)) is evaluated with one
division and the result then multiplied by each point in ARR the
process requires approximately half the time.

Relational Operators

The six relational operators are:

Table 3-6: Relational Operators

Operator Purpose
EQ Equal to
NE Not equal to
LE Less than or equal to
LT Less than
GE Greater than or equal to
GT Greater than

Relational operators apply a relation to two operands and return a
logical value of true or false. The resulting logical value may be
used as the predicate in IF, WHILE, or REPEAT statements or may
be combined using Boolean operators with other logical values to
make more complex expressions. For example:

1 EQ1
is true, and
1 GT 3

is false.

Relational Operators
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The rules for evaluating relational expressions with operands of
mixed modes are the same as those given above for arithmetic
expressions. For example, in the relational expression:

(2 EQ 2.0)

the integer 2 is converted to floating-point and compared to the
floating-point 2.0. The result of this expression is true which is
represented by a floating-point 1.0.

In PV=WAVE, the value true is represented by the following:

* Anodd, non-zero value for byte, integer and longword integer
data types.

* Any non-zero value for single, double-precision and complex
floating.

* Any non-null string.

Conversely, false is represented as anything that is not true: zero-
or even-valued integers; zero-valued floating-point quantities; and
the null string.

The relational operators return a value of 1 for true and zero for
false. The type of the result is determined by the same rules that
govern the types of arithmetic expressions. So,

(100. EQ 100.)
is 1.0, while

(100 EQ 100)
is 1, the integer.

Relational operators may be applied to arrays and the result, which
is an array of ones and zeroes, may be used as an operand. For
example, the expression:

ARR * (ARR LE 100)

is an array equal to ARR except that all points greater than 100
have been zeroed. The expression (ARR LE 100) is an array that
contains a 1 where the corresponding element of ARR is less than
or equal to 100, and zero otherwise.
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Boolean Operators

Results of relational expressions may be combined into more com-
plex expressions using the Boolean operators AND, OR, NOT,
and XOR (exclusive OR). The action of these operators is summa-
rized as follows:

Table 3-7: Action of AND, OR, XOR

Operator (oper) ToperT | ToperF F oper F

AND T F
OR T T

XOR F T

NOT is the Boolean inverse and is a unary operator because it only
has one operand. NOT true is false and NOT false is true.

When applied to bytes, integers, and longword operands, the Bool-
ean functions operate on each binary bit.

(1 AND 7)
Evaluates to 1.

(3 OR 5)
Evaluates to 7.

(NOT 1)
Evaluates to -2 (twos-complement arithmetic).

(5 XOR 12)
Evaluates to 9.

When applied to data types that are not integers, the Boolean oper-
ators yield the following results:

OP1 AND OP2
Means oP1 if op2 is true (not zero or not the null string), other-
wise false (zero or the null string).

OP1 OR OP2
Means op2 if OP2 is true, otherwise OP1.
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Some examples of relational and Boolean expressions are:

(A LE 50) AND (A GE 25)

True if A is between 25 and 50. If a is an array the result is an
array of ones and zeroes.

(A GT 50) OR (A LT 25)
True if A is less than 25 or A is greater than 50. This expression
is the inverse of the first example.

ARR AND 'FF’'X

ANDs the hexadecimal constant FF, (255 in decimal) with the
array ARR. This masks the lower 8 bits and zeroes the upper bits.

PV-WAVE Command Language Operators

Operators are used to combine terms and expressions. The set of
PV=WAVE operators is:

Parentheses ()

Used in grouping of expressions and to enclose subscript and func-
tion parameter lists. Parentheses can be used to override order of
operator evaluation as described above. Examples:

A(X, Y)
Parentheses enclose subscript lists, if A is defined as a variable.

SIN(ANG * PI / 180.)
Parentheses enclose function argument lists.

X =(A+5) /B
Parentheses specify order of operator evaluation.

Assignment Operator =

The value of the expression on the right side of the equal sign is
stored in the variable, subscript element, or range on the left side.
For more information, see Assignment Statement on page 53.

44 PV=WAVE Programmer’s Guide for Advantage and CL



For example:

A = 32
Assigns the value of 32 to variable A.

Addition Operator +

Besides arithmetic addition, the addition operator concatenates the
strings. For example:

B=3+6
Assigns the value of 9 to B.

B = 'John’ + ' ' + 'Doe’
Assigns the string value of “John Doe” to B.

Subtraction Operator -

Besides subtraction, the minus sign is used as the unary negation
operator. For example:

c=9-75
Assigns the value of 4 to C.

c=-2°¢C
Changes the sign of C.

Multiplication Operator *

Multiplies two operands. For example:

A=5*4
Assigns the value of 20 to A.

Division Operator /

Divides two operands. For example:

A =20/ 4
Assigns the value of 5 to A.
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Exponentiation Operator "

A”"B is equal to A to the B power. If B is of integer type, repeated
multiplication is applied, otherwise the formula AP = ¢8/84 jg
evaluated. 0" 0 is undefined for all types of operands.

Minimum Operator <
The value of A < B is equal to the smaller of A or B. For example:

A =5«<3
Sets Ato 3.

ARR = ARR < 100
Sets all points in array ARR that are larger than 100 to 100.

X = X0 < X1 < X2
Sets X to smallest operand.

Maximum Operator >
A > Bis equal to the larger of A or B. For example:

C = ALOG(D > 1E-6)
Avoids taking logs of 0 or negative numbers.

PLOT, ARR > 0
Plots only positive points. Negative points are plotted as zero.

Matrix Multiplication Operator #
The rules of linear algebra are followed:

* The two operands must conform in that the second dimension
of the first operand must equal the first dimension of the sec-
ond operand.

* The first dimension of the result is equal to the first dimension
of the first operand and the second dimension of the result is
equal to the second dimension of the second operand.

*  The type of the result is complex, double-precision or floating-
point, in decreasing order of precedence. In mixed-mode oper-
ations, the calculations are performed in the mode yielding the
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greatest precision. If neither operand is of one of these types,
the type of the result is floating-point.

If a parameter is a one-dimensional vector, it is interpreted as
either a row or column vector, whichever conforms to the other
operand. If both operands are vectors, the result of the operation is
the outer product of the two vectors. Results in which the second
dimension is equal to 1 (row vectors) are converted to vectors.

Use the TOTAL function to obtain the inner product which is the
sum of the product of the elements of the vectors. The expression

TOTAL(A * A)
calculates the inner product of the vector A.
For example, the PV=WAVE statement:
PRINT, [1, 2, 3, 4) # [1, 2, 3, 4]

prints the outer product of two four-element vectors whose ele-
ments are the integers 1 to 4, or:

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

Note ' The notion of columns and rows in PV=WAVE is reversed from
that of linear algebra, although their treatment is consistent. The
main reason for this is to allow the X subscript to appear first when
subscripting images, as is the convention. Arrays and vectors that
are operands for the matrix multiplication operator may be trans-
posed, either by entering them transposed or by using the
TRANSPOSE function.

Array Concatenation Operators [ ]

Operands enclosed in square brackets and separated by commas
are concatenated to form larger arrays. The expression [A, B]is
an array formed by concatenating the first dimensions of A and B,
which may be scalars or arrays.
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AND

EQ

Similarly, [A, B, C] concatenates A, B, and C. The second and
third dimensions may be concatenated by nesting the bracket lev-
els: [[1, 2], [3, 4]]isatwo-by-two array with the first
row containing 1 and 2, and the second row containing 3 and 4.
Operands must have compatible dimensions: all dimensions must
be equal except the dimension that is to be concatenated. For
example, [2, INTARR(2, 2)] areincompatible.

For example:

c=1-1, 1, -1]
Defines C as three-point vector.

c = [C, 12]
Adds a 12 to the end of C.

c = [12, C]
Inserts a 12 at the beginning.

PLOT, [ARR1, ARR2]
Plots ARR2 appended to the end of ARR1.

KER = [[1, 2, 1], [2, 4, 2], [1, 2, 1]]
Defines a 3-by-3 array.

AND is the Boolean operator which results in true whenever both
of its operands are true, otherwise the result is false. Any non-zero
value is considered true. For integer and byte operands, a bitwise
AND operation is performed. For operations on other types, the
result is equal to the first operand if the second operand is not equal
to zero or the null string. Otherwise, it is zero or the null string.

EQ returns true if its operands are equal, otherwise it is false. For
floating-point operands true is 1.000; for integers and bytes, it is 1.
For string operands, a zero-length null string represents false.
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GE

GT

LE

LT

MOD

GE is the greater than or equal to relational operator. GE returns
true if the operand on the left is greater than or equal to the one on
the right.

One use of relational operators is to mask arrays:

A = ARRAY * (ARRAY GE 100)

sets A equal to ARRAY whenever the corresponding element of
ARRAY is greater than or equal to 100; if the element is less than
100, the corresponding element of A is set to 0.

[{32]

Strings are compared using the ASCII collating sequence: “ ” is
less than “0”, is less than “9”, is less than “A”, is less than “Z”, is
less than “a”, which is less than “z”.

Greater than relational operator.

Less than or equal to relational operator.

Less than relational operator.

Modulo operator. I MOD J is equal to the remainder when I is
divided by J. When I or J are floating-point, double-precision, or
complex,I MOD J = I - J * [I/J], where the bracketed
value is the largest integer smaller than or equal to the expression
in the brackets. For example:

A =9 MOD 5
Ais setto 4.

A = (ANGLE + B) MOD (2 * PI)
Compute angle modulo 2.
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NE

NOT

OR

XOR

NE is the not equal to relational operator. It is true whenever the
operands are not of equal value.

NOT is the Boolean complement operator. NOT true is false. NOT
complements each bit for integer or byte operands. For floating-
point operands, the result is 1.0 if the operand is zero, otherwise,
the result is zero.

OR is the Boolean inclusive operator. For integer or byte operands
a bitwise inclusive “or” is performed. For example, 3 OR 5
equals 7. For floating-point operands the OR operator returns a 1.0
if neither operand is zero, otherwise zero is the result.

The Boolean exclusive “or” function. XOR is only valid for inte-
ger or byte operands. XOR returns a one bit if the corresponding
bits in the operands are different; if they are equal, a zero bit is
returned.
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Statement Types

PV=-WAVE programs, procedures, and functions are composed of
one or more valid statements. Most simple PV=WAVE statements
may also be entered in the interactive mode in response to the
WAVE> prompt. The 12 types of PV=WAVE statements are:

* Assignment

* Block

» CASE

e Common Block Definition
* FOR

*  Function Definition

* GOTO

« IF

*  Procedure Call

*  Procedure Definition
* REPEAT

¢  WHILE
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Components of Statements

Statements in PV=WAVE may consist of any combination of three
parts:

*  Alabel field
*  The statement proper
* A comment field

Spaces and tabs may appear anywhere except in the middle of an
identifier or numeric constant.

Statement Labels

Labels are the destinations of GOTO statements. The label field,
which must appear before the statement or comment, is simply an
identifier followed by a colon. A line may consist of only a label
field. Label identifiers, as with variable names, may consist of
from one to 31 alphanumeric characters. The $ (dollar sign) and _
(underscore) characters may appear after the first character. Some
examples of labels are:

Label 1:

LOOP_BACK: A = 12

I$SQUIT: RETURN ;Quit the loop.
Note that comments are allowed after labels.

Adding Comments

The comment field, which is ignored by PV=WAVE, begins with a
semicolon and continues to the end of the line. Lines may consist
of only a comment field. There are no execution time or space pen-
alties for comments in PV=-WAVE.
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Assignment Statement

The assignment statement stores a value in a variable. There are
four forms of the assignment statement. They are described in
detail in this section.

Table 4-1 summarizes the four forms of assignment statements.

Table 4-1: Forms of Assignment Statements

Subscript | Expression
Effect
Syntax Structure | Structure ec
Form 1: none Scalar or The expr is stored in
Var = expr Array Var.
Form 2: Scalar Scalar The scalar expres-
Var(subs) = scalar sion is stored in a
single element of Var.
Array Scalar The scalar
expression is stored
in the designated
elements of Var.
Form 3: Range Scalar The scalaris inserted
Var(range) = expr into the subarray.
Range Array lilegal
Form 4: Scalar Array The array is inserted
Var(subs) = array in the Var array.
Array Array The elements of the
array are stored in
the designated
elements of Var.

Form 1

The first (and most basic) form of the assignment statement has the
form:

variable = expression
Stores the value of the expression in the variable.

Assignment Statement 53



Form 2

The old value of the variable, if any, is discarded and the value of
the expression is stored in the variable. The expression on the right
side may be of any type or structure. Some examples of the basic
form of the assignment statement are:

MMAX = 100 * X + 2.987
Stores the value of the expression in MMAX.

NAME = ’'MARY’
Stores the string ‘MARY’ in the variable NAME.

ARR = FLTARR(100)
ARR is now a 100-element floating-point array.

ARR = ARR(50:*)

Discards elements 0 to 49 of ARR. ARR is now a 50-element
array.

The second type of assignment statement has the form:

variable(subscripts) = scalar_expression
Stores the scalar in an element of the array variable.

Here, a single element of the specified array is set to the value of
the scalar expression. The expression may be of any type and is
converted, if necessary, to the type of the variable. The variable on
the left side must be either an array or a file variable.

DATA(100) = 1.234999
Sets element (100) of DATA to value.

NAME (INDEX) = ‘JOE’

Stores a string in the array. NAME must be a string array or an
error will result.
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Using Array Subscripts with the Second Form

If the subscript expression is an array, the scalar value will be
stored in the elements of the array whose subscripts are elements
of the subscript array. For example, the statement:

DATA( (3, 5, 7, 9] ) =0

will zero the four specified elements of DATA: DATA(3),
DATA(5), DATA(7),and DATA(9).

The subscript array is converted to longword type if necessary
before use. Elements of the subscript array that are negative or
greater than the highest subscript of the subscripted array are
ignored.

The WHERE function may frequently be used to select elements
to be changed. For example, the statement:

DATA (WHERE (DATA LT 0)) = -1

will set all negative values of DATA to —1 without changing the
positive values. The result of the function WHERE (DATA LT 0)
is a vector composed of the subscripts of the negative values of
DATA. Using this vector as a subscript changes all the negative
values to —1 in DATA. Note that if the WHERE function finds no
eligible elements, it returns a 1-element vector equal to —1; using
this result as a subscript vector changes no elements of the sub-
scripted array; it results in a “subscript out of range” error as
negative subscripts are not allowed. For more information on the
WHERE function, see the PV=WAVE Reference.

Form 3

The third type of assignment statement is similar to the second,
except the subscripts specify a range in which all elements are set
to the scalar expression.

variable(subscript_range) = scalar_expression

Stores the scalar in the elements of the array variable
designated by the subscript range.
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Form 4

A subscript range specifies a beginning and ending subscript. The
beginning and ending subscripts are separated by the colon char-
acter. An ending subscript equal to the size of the dimension minus
one may be written as *.

For example, ARR (I:J) denotes those points in the vector ARR
with subscripts between I and J. I must be less than J and greater
than or equal to zero. J must be less than the size of the array
dimension. ARR ( I: *) denotes the points in ARR from ARR(I)
to the last point.

For more information on subscript ranges, see Subscript Ranges
on page 84.

Assuming the variable B is a 512-by-512 byte array, some exam-
ples are:

B(*, I) =1
Stores ones in the ith row.

B(J, *) =1
Stores ones in the jth column.

B(200:220, *) =0
Zeroes all the rows of the columns 200 through 220 of the array
B.

B(*) = 100.
Stores the value 100 in all the elements of the array B.

The fourth type assignment statement is of the form:

variable(subscripts) = array

Inserts the array expression into the array variable starting
at the element designated by the subscripts.

Note that this form is syntactically identical to the second type of
assignment statement, except the expression on the right is an
array instead of a scalar. This form of the assignment statement is
used to insert one array into another.
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The array expression on the right is inserted into the array appear-
ing on the left side of the equal sign, starting at the point
designated by the subscripts.

For example, to insert the contents of an array called A into an
array called B, starting at point B(13,24):

B(13, 24) = A
If A is a 5-column by 6-row array, elements B(13:17,
24 :29) will be replaced by the contents of the array A.

Another example moves a subarray from one position to another:

B(100, 200) = B(200:300, 300:400)
A subarray of B, specifically the columns 200 to 300 and rows
300 to 400, is moved to columns 100 to 200 and rows 200 to
300, respectively.

Using Array Subscripts with the Fourth Form

If the subscript expression applied to the variable is an array and
an array appears on the right side of the statement:

var(array) = array

elements from the right side are stored in the elements designated
by the subscript vector. Only those elements of the subscripted
variable whose subscripts appear in the subscript vector are
changed.

For example, the statement:

B( [2, 4, 6 ] ) = [4, 16, 36]

is equivalent to the following series of assignment statements:
B(2) = 4 & B(4) = 16 & B(6) = 36

Subscript elements are interpreted as if the subscripted variable is
a vector. For example if A is a 10-by-n matrix, the element A(i,j)
has the subscript (i+ 10j). The subscript array is converted to long-
word type before use if necessary.

Assignment Statement
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As described above for the second type of assignment statement,
elements of the subscript array that are negative or larger than the
highest subscript are ignored and the corresponding element of the
array on the right side of the equal sign is skipped.

As another example, assume that the vector DATA contains data
elements and that a data drop-out is denoted by a negative value.
In addition, assume that there are never two or more adjacent drop-
outs.

The following statements will replace all drop-outs with the aver-
age of the two adjacent good points:

BAD = WHERE(DATA LT 0)
Subscript vector of drop-outs.

DATA(BAD) = (DATA(BAD - 1) + DATA(BAD + 1)) / 2
Replace drop-outs with average of previous and next point.

In this example:

* Elements of the vector BAD are set to the subscripts of the
points of DATA that are drop-outs using the WHERE function.
The WHERE function returns a vector containing the sub-
scripts of the non-zero elements of its (DATA LT 0). This
Boolean expression is a vector that is non-zero where the ele-
ments of DATA are negative and is zero if positive.

* The expression DATA (BAD — 1) is a vector which contains
the subscripts of the points immediately preceding the drop-
outs, while similarly, the expression DATA(BAD + 1) isa
vector containing the subscripts of the points immediately
after the drop-outs.

* The average of these two vectors is stored in DATA (BAD ) —
the points that originally contained drop-outs.
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Associated Variables in Assignment Statements

A special case occurs when using an associated file variable in an
assignment statement. For additional information regarding the
ASSOC function, see Chapter 8, Working with Data Files. When
a file variable is referenced, the last (and possibly only) subscript
denotes the record number of the array within the file. This last
subscript must be a simple subscript. Other subscripts and sub-
script ranges, except the last, have the same meaning as when used
with normal array variables.

An implicit extraction of an element or subarray in a data record
may also be performed:

A = ASSOC(1, FLTARR(200))
Variable A associates the file open on unit 1 with records of 200-
element floating point vectors.

X = A(0:99, 2)
Xis set to the first 100 points of record number 2, the third record
of the file.

A(23, 16) = 12
Sets the 24th point of record 16 to 12.

A(10, 12) = A(10:*, 12) + 1
Points 10 to 199 of record 12 are incremented. Points 0 to 9 of
that record remain unchanged.

Assignment Statement
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Blocks of Statements

BEGIN

Statement;

Statement,,

END

A block of statements is simply a group of statements that are
treated as a single statement. Blocks are necessary when more than
one statement is the subject of a conditional or repetitive state-
ment, as in the FOR, WHILE, and IF statements.

In general, the format of a FOR statement with a block subject is:
FOR variable = expression, expression DO BEGIN

Statement
statement2

statementn

ENDFOR

All the statements between the BEGIN and the ENDFOR are the
subject of the FOR statement. The group of statements is executed
as a single statement and is considered to be a compound state-
ment. Blocks may include other blocks.

Syntactically, a block of statements is composed of one or more
statements of any type, started by a BEGIN identifier and ended
by an END identifier. PV=WAVE allows the use of blocks wher-
ever a single statement is allowed. Blocks may also be nested
within other blocks.
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For example, the process of reversing an array in place might be
written:

FOR I = 0, (N - 1) / 2 DO BEGIN
T = ARR(I)
ARR(I) = ARR(N - I - 1)
ARR(N—TI — 1) =T

ENDFOR

The three statements between the BEGIN and ENDFOR are the
subject of the FOR statement. Each statement is executed one time
during each iteration of the loop. If the statements had not been
enclosed in a block, only the first statement (T = ARR(I))would
have been executed each iteration, and the remaining two state-
ments would have each been executed only once after the
termination of the FOR statement.

To ensure proper nesting of blocks of statements, the END termi-
nating the block may be followed by the block type as shown in
Table 4-2. The compiler checks the end of each block, comparing
it with the type of the enclosing statement.

Note ' Any block may be terminated by the generic END, although no
type checking will be performed.

Table 4-2: End Statements

End Statement Usage
ENDCASE CASE statement
ENDELSE IF statement, ELSE clause
ENDFOR FOR statement
ENDIF IF statement, THEN clause
ENDREPEAT REPEAT statement
ENDWHILE WHILE statement

Listings produced by the PV=WAVE compiler indent each block
four spaces to the right of the previous level to improve the legi-
bility of the program structure.
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CASE Statement

CASE expression OF
expression: statement

o o o

expression: statement
ELSE: statement
ENDCASE

The CASE statement is used to select one, and only one, statement
for execution depending upon the value of the expression follow-
ing the word CASE. This expression is called the case selector
expression. Each statement that is part of a CASE statement is
preceded by an expression which is compared to the value of the
selector expression. If a match is found, the statement is executed
and control resumes directly below the CASE statement.

The ELSE clause of the CASE statement is optional. If included,
it must be the last clause in the CASE statement. The statement
after the ELSE is executed only if none of the preceding statement
expressions match. If the ELSE is not included and none of the
values match, an error will occur and program execution will stop.

An example of the CASE statement is:
CASE NAME OF

"LINDA’: PRINT, ’'SISTER'
Executed if NAME = 'LINDA'

"JOHN’: PRINT, ’'BROTHER’
Executed if NAME = 'JOHN'

"HARRY': PRINT, ’'STEP-BROTHER’

ELSE: PRINT, ’'NOT A SIBLING'
Executed if no matches.

ENDCASE
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Another example, below, shows the CASE statement with the
number 1 as the selector expression of the CASE. 1 is equivalent
to true and is matched against each of the conditionals.

CASE 1 OF
(X GT 0) AND (X LE 50): Y = 12 *
(X GT 50) AND (X LE 100): Y = 13
(X LE 200): BEGIN
Y =14 * X - 5
Z =X+Y
END
ELSE: PRINT, 'X has illegal value’

ENDCASE

X +5
* X + 4

In the CASE statement, only one clause is selected, and that clause
is the first one whose value is equal to the value of the case selector

expression.

Common Block Definition Statement

COMMON block_name, var;, varj,..., var,,

The Common Block Definition statement creates a Common
Block with the designated name (up to 31 characters long) and
places the variables whose names follow into that block. Variables
defined in a Common Block may be referenced by any program
unit that declares that Common Block.

A Common Block Definition statement is useful when there are
variables which need to be accessed by several procedures. Any
program unit referencing a Common Block may access variables
in the block as though they were local variables. Variables in a
Common statement have a global scope within procedures defin-
ing the same Common Block. Unlike local variables, variables in
Common Blocks are not destroyed when a procedure is exited.

The number of variables appearing in the Common Block Defini-
tion statement determines the size of the Common Block. The first
program unit (main program, function, or procedure) defining the
Common Block sets the size of the Common Block, which is
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fixed. Other program units may reference the Common Block with
the same or fewer number of variables.

Common Blocks share the same space for all procedures. In
PV=-WAVE, Common Block variables are matched variable to
variable, unlike FORTRAN, where storage locations are matched.
The third variable in a given PV=WAVE Common Block will
always be the same as the third variable in all declarations of the
Common Block regardless of the size, type or structure of the pre-
ceding variables.

The two procedures in the following example show how variables
defined in Common Blocks are shared:

PRO ADD, A
COMMON SHAREl, X, Y, Z, Q, R
A=X+Y+ 272+ Q+ R
PRINT, X, Y, 2, Q, R, A
RETURN

END

PRO SUB, T
COMMON SHAREl1l, A, B, C, D
T=A-B-C-0D
PRINT, A, B, C, D, T
RETURN

END

The variables X, Y, Z, and Q in the procedure ADD are the same as
the variables A, B, C, and D, respectively, in procedure SUB. The
variable R in ADD is not used in SUB. If the procedure SUB were
to be compiled before the procedure ADD, an error would occur
when the COMMON definition in ADD was compiled. This is
because SUB has already declared the size of the Common Block,
SHARE]1, which may not be extended.

Variables in Common Blocks may be of any type and may be used
in the same manner as normal variables. Variables appearing as
parameters may not be used in Common Blocks. There are no
restrictions in regard to the number of Common Blocks used,
although each Common Block uses dynamic memory.
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FOR Statement

Caution V

There are two basic forms of the FOR statement:

FOR var = expr;, expr, DO statement
Form 1: Increment of 1.

FOR var = expr;, expr,, expr; DO statement
Form 2: Variable increment.

The FOR statement is used to execute one or more statements
repeatedly while incrementing or decrementing a variable each
repetition until a condition is met. It is analogous to the DO state-
ment in FORTRAN. In PV=WAVE, there are two types of FOR
statements; one with an implicit increment of 1, and the other with
an explicit increment. If the condition is not met the first time the
FOR statement is executed, the subject statement is not executed.

The data type of the statement and the index variable are deter-
mined by the type of the initial value expression.

Form 1: Implicit Increment

The FOR statement with an implicit increment of 1 is written as
follows:

FOR var = expr), expr, DO statement

The variable after the FOR is called the index variable and is set
to the value of the first expression. The statement is executed, and
the index variable is incremented by one, until the index variable
is larger than the second expression. This second expression is
called the limit expression.

Complex limit and increment expressions are converted to
floating-point type.

An example of a FOR statement is:
FOR I = 1, 4 DO PRINT, I, I"2

which produces the output:

FOR Statement
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The index variable I is first set to an integer variable with a value
of 1. The call to the PRINT procedure is executed, then the index
is incremented by 1. This is repeated until the value of I is greater
than 4, when execution continues at the statement following the
FOR statement.

The next example displays the use of a block structure in place of
the single statement for the subject of the FOR statement. The
example is a common process used for computing a count-density
histogram.

A HISTOGRAM function is provided by PV=WAVE in the Stan-
dard Library. For detailed information on the HISTOGRAM
function, see the PV=WAVE Reference.

FOR K = 0, N - 1 DO BEGIN
C = A(K
HIST(C) = HIST(C) + 1
ENDFOR

Another example is:
FOR X = 1.5, 10.5 DO S = S + SQRT(X)

In this example, X is set to a floating-point variable and steps
through the values (1.5, 2.5, ..., 10.5).

The indexing variables and expressions may be integer, longword
integer, floating-point, or double-precision. The type of the index
variable is determined by the type of the first expression after the
= character.

If you need to use very large integers in a FOR loop condition, be
sure to designate them as longword in the FOR loop statement. For
example:

FOR i=300000L, 700000L DO BEGIN

ENDFOR
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Form 2: Explicit Increment

Caution '

The format of the second type of FOR statement is:

FOR var = expr), expr,, expr; DO statement

The first two expressions describe the range of numbers the vari-
able will assume. The third expression specifies the increment of
the index variable. A negative increment allows the index variable
to step downward. In this case, the first expression must have a
value greater than that of the second expression. If it does not, the
statement will not be executed.

The following examples demonstrate the second type of FOR
statement:

FOR K = 100.0, 1.0, -1 DO ...
Decrement K has the values: 100., 99, ...,2, 1.

FOR LOOP = 0, 1023, 2 DO ...
Increments by 2. LOOP has the values 0, 2, 4,..., 1022.

FOR MID = BOTTOM, TOP, (TOP - BOTTOM) / $
4.0 DO ...
Divides range from BOTTOM to TOP by 4.

If the value of the increment expression is zero an infinite loop will
occur. A common mistake resulting in an infinite loop is a state-
ment similar to the following:

FOR X =0, 1, .1 DO ...

The variable X is first defined as an integer variable because the
initial value expression is an integer zero constant. Then the limit
and increment expressions are converted to the type of X, integer,
yielding an increment value of zero because .1 converted to inte-
ger type is zero. The correct form of the statement is:

FOR X = 0., 1, .1 DO ...

which defines X as a floating-point variable.

FOR Statement
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Function Definition Statement

FUNCTION function_name, py, p», ..., p,

A function may be defined as a program unit containing one or
more PV=WAVE statements which returns a value. Once a func-
tion has been defined, references to the function cause the program
unit to be executed. All functions return a function value which is
given as a parameter in the RETURN statement used to exit the
function.

Briefly the format of a function definition is, where name can con-
tain up to 31 characters:

FUNCTION name, parametery,..., parameter,
Statement;
Statement,

RETURN, expression
END

For example, to define a function called AVERAGE that returns
the average value of an array:

FUNCTION AVERAGE, ARR
RETURN, TOTAL(ARR)/N_ELEMENTS (ARR)
END
Once the function AVERAGE has been defined, it is executed by
entering the function name followed by its arguments enclosed in
parentheses. Assuming the variable X contains an array, the state-
ment:

PRINT, AVERAGE(X"2)

squares the array X, passes this result to the AVERAGE function,
and prints the result.

Functions can take positional and keyword parameters. For more
information on parameters and parameter passing, see Positional
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Parameters and Keyword Parameters on page 74 and More On
Parameters on page 75.

For more information on writing functions, see Chapter 9, Writing
Procedures and Functions.

Automatic Compilation of Functions and Procedures

Caution '

PV=WAVE will automatically compile and execute a user-written
function or procedure when it is first referenced if both of the fol-
lowing conditions are met:

» The source code of the function is in the current working
directory or in a directory in the PV=WAVE search path
defined by the system variable !Path. For more information
setting the search path, see WAVE_PATH: Setting Up a Search
Path on page 46 of the PV=WAVE User’s Guide. For more
information on system variables, see System Variables on
page 26.

*  The name of the file containing the function is the same as the
function name suffixed by . pro. The file name should be in
lowercase letters.

User-written functions must be defined before they are referenced,
unless they meet the above conditions for automatic compilation.
This restriction is necessary in order to distinguish between
function calls and subscripted variable references. For more
information on compiling functions and procedures, see Using
Executive Commands on page 26 of the PV=WAVE User’s Guide.
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GOTO Statement

Caution

GOTO, label

The GOTO statement is used to transfer program control to the
point in the program specified by the label. An example of the
GOTO statement is:

GOTO, JUMP1
Statements . . .

JUMP1l: X = 2000 + Y

In the above example, the statement at label JUMP1 is executed
after the GOTO statement, skipping intermediate statements. The
label may also occur before the reference of the GOTO to that
label.

Be careful in programming with GOTO statements. It is not diffi-
cult to get into a loop that will never terminate if there is not an
escape (or test) within the statements spanned by the GOTO (and
sometimes even when there is!).

GOTO statements are frequently subjects of IF statements:

IF A NE G THEN GOTO, MISTAKE

IF Statement

The basic forms of the IF statement are:
IF expression THEN statement

IF expression THEN statement ELSE statement

The IF statement is used to execute conditionally a statement or a
block of statements.
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The expression after the IF is called the condition of the IF state-
ment. This expression (or condition) is evaluated, and if true, the

statement following the THEN is executed. If the expression eval-
uates to a false value the statement following the ELSE clause is

executed. Control passes immediately to the next statement if the
condition is false and the ELSE clause is not present.

Examples of the IF statement include:
IF A NE 2 THEN PRINT, 'A IS NOT TWO’

IF A EQ 1 THEN PRINT, ‘A IS ONE' ELSE $
PRINT, 'A IS NOT ONE'’

The first example contains no ELSE clause. If the value of A is not
equalto2,A IS NOT TWOis printed. If A is equal to 2, the THEN
clause is ignored, nothing is printed, and execution resumes at the
next statement. In the second example above, the condition of the
IF statement is (A EQ 1). If the value of Aisequalto 1,A IS
ONE is printed, otherwise NOT ONE is printed.

Definition of True in an IF Statement

The condition of the IF statement may be any scalar expression.
The definition of true and false for the different data types is as fol-
lows:

* Byte, Integer and Longword — Odd integers are true, even
integers are false.

*  Floating-point, Double-precision floating-point and Complex
— Nonzero values are true, zero values are false. The imagi-
nary part of complex floating numbers is ignored.

* String — Any string with a non-zero length is true, null strings
are false.
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In the following example, the logical expression is a conjunction

of two relational expressions.
IF (LON GT -40) AND (LON LE -20) THEN . .

If both conditions — LON being larger than —40 and less than or
equal to —20 — are true then the statement following the THEN
will be executed.

The THEN and ELSE clauses may also be in the form of a block
(or group of statements) with the delimiters BEGIN and END.
(See Blocks of Statements on page 60.) To ensure proper nesting
of blocks, you may use ENDIF to terminate the block, instead of
using the generic END.

Below is an example of the use of blocks within an IF statement.

IF (expression) THEN BEGIN

ENDELSE ;End of else clause
IF statements may be nested in the following manner:

IF P1 THEN S1 ELSE
IF P2 THEN S2 ELSE

. .

IF Pn THEN Sn ELSE Sx

72

PV=WAVE Programmer’s Guide for Advantage and CL



If condition P1 is true, only statement S1 is executed; if condition
P2 is true, only statement S2 is executed, etc. If none of the con-
ditions are true statement Sx will be executed. Conditions are
tested in the order they are written. The above construction is sim-
ilar to the CASE statement except that the conditions are not
necessarily related.

Procedure Call Statement
PROCEDURE_NAME, p;, p», ..., Pn

The Procedure Call statement invokes a system, user-written, or
externally defined procedure. The parameters which follow the
procedure’s name are passed to the procedure. Control resumes at
the statement following the Procedure Call statement when the
called procedure finishes.

Procedures may come from the following sources:
*  System procedures provided with PV=WAVE.

»  User-written procedures written in PV=WAVE and
compiled with the . RUN command.

*  User-written procedures that are compiled automatically
because they reside in directories in the search path. These
procedures are compiled the first time they are used. See
Automatic Compilation of Functions and Procedures on page
69.

e Standard Library procedures, written in PV=WAVE,
contained in a directory in the search path, and provided with
PV=-WAVE.
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Examples

ERASE

This is a procedure call to a subroutine to erase the current win-
dow. There are no explicit inputs or outputs. Other procedures
have one or more parameters. For example:

PLOT, Circle

calls the PLOT procedure with the parameter Circle.

Positional Parameters and Keyword Parameters

Parameters passed to procedures and functions are identified by
their position or by a keyword.

As their name indicates, the position of positional parameters
establishes the correspondence of the parameters in the call and
those in the definition of the procedure or function.

A keyword parameter is a parameter preceded by a keyword and
an equal sign (=) that identifies the parameter.

For example, the PLOT procedure can be instructed to not erase
the screen and to draw using color index 12 by either of the calls:

PLOT, X, Y, Noerase = 1, Color = 12
or:
PLOT, X, Y, Color = 12, /Noerase

The two calls produce identical results. Keywords may be abbre-
viated to the shortest non-ambiguous string. The /Keyword
construct is equivalent to setting the keyword parameter to the
value 1. For example, /Noerase is equivalent to Noerase=1.

In the above examples, the parameter X is the first positional
parameter, because it is not preceded by a keyword. Y is the second
positional parameter.

Calls may mix arguments with and without keywords. The inter-
pretation of keyword arguments is independent of their order. The
placement of keyword arguments does not affect the interpretation

74

PV=WAVE Programmer’s Guide for Advantage and CL



of positional parameters — keyword parameters may appear
before, after, or in the middle of the positional parameters.

Keyword parameters offer the following advantages:

e Procedures and functions may have a large number of argu-
ments, any of which may be optional. Only those arguments
that are actually used need be present in the call.

It is much easier to remember the names of keyword argu-
ments, rather than their order.

+ Additional features can be added to existing procedures and
functions without changing the meaning or interpretation of
other arguments.

More On Parameters

Parameters may be of any type or structure, although some system
procedures, as well as user-defined procedures, may require a par-
ticular type of parameter for a specific argument.

Parameters may also be expressions which are evaluated, used in
the call, and then discarded. For example:

PLOT, SIN(Circle)

The sine of the array Circle is computed and plotted, then the
result of the computation is discarded.

Parameters are passed by value or by reference. Parameters that
consist of only a variable name are passed by reference. Expres-
sions, constants, and system variables are passed by value. The
two passing mechanisms are fundamentally different. The called
procedure or function may not return a value in a parameter that is
passed by value, as the value of the parameter is evaluated and
passed into the called procedure, but is not copied back to the
caller. Changes made by the called procedure are passed back to
the caller if the parameter is passed by reference. For more details,
see Parameter Passing Mechanism on page 246.
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Procedure Definition Statement
PRO name, p;, p,, ..., p,

A sequence of one or more PV=WAVE statements may be given a
name, compiled and saved for future use with the Procedure Def-
inition statement.

Once a procedure has been successfully compiled, it may be exe-
cuted using a procedure call statement interactively from the
WAVE> prompt, from a main program, or from another procedure
or function.

The general format for the definition of a procedure is, where
name can be up to 31 characters long:

PRO name, param, ..., param,
Statement,,
Statement,

RETURN
END

For more information on writing procedures, see Chapter 9, Writ-
ing Procedures and Functions.

Calling a user-written procedure that is in a directory in the
PV-WAVE search path (!Path) causes the procedure to be read
from the disk, compiled, saved, and executed, without interrupting
program execution. If you are running under VMS, see VMS Pro-
cedure Libraries on page 251 for information on creating libraries
of procedures.
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REPEAT Statement

REPEAT subject_statement UNTIL condition_expr

The REPEAT statement repetitively executes its subject statement
until a condition is true. The condition is checked after the subject
statement is executed. Therefore, the subject statement is always
executed at least once.

Below are some examples of the use of the REPEAT statement:

A=1
REPEAT A = A * 2 UNTIL A GT B

This code finds the smallest power of 2 that is greater than B. The
subject statement may also be in the form of a block, as shown in
the following block of code that sorts an array:

REPEAT BEGIN
NOSWAP = 1
Init flag to true.

FOR 1 = 0, N - 2 DO IF ARR(I) GT ARR(I + 1)
THEN BEGIN
NOSWAP = 0
Swapped elements, clear flag.

T = ARR(I)
ARR(I) = ARR(I + 1)
ARR(I + 1) = T

ENDFOR

ENDREP UNTIL NOSWAP
Keep going until nothing is moved.

The above example sorts the elements of ARR using the inefficient
bubble sort method. A more efficient way to sort array elements is
to use PV=WAVE’s SORT function.

The ending statement for a REPEAT loop is ENDREP, not
ENDREPEAT.

REPEAT Statement
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WHILE Statement

WHILE expression DO statement

WHILE statements are used to execute a statement repeatedly
while a condition remains true. The WHILE statement is similar
to the REPEAT statement except that the condition is checked
prior to the execution of the statement.

When the WHILE statement is executed, the conditional expres-
sion is tested, and if it is true, the statement following the DO is
executed. Control then returns to the beginning of the WHILE
statement where the condition is again tested. This process is
repeated until the condition is no longer true, at which point the
control of the program continues at the next statement.

In the WHILE statement, the subject is never executed if the con-
dition is initially false.
Examples of WHILE statements are:
WHILE NOT EOF(1) DO READF, 1, A, B, C
In this example, data are read until the end-of-file is encountered.

The next example demonstrates one way to find the first point of
an array greater than or equal to a selected value assuming the
array is sorted in ascending order (the array contains N elements):

N = N_ELEMENTS (ARR)
Determine number of elements in ARR.

I =0
Initializes index.

WHILE (ARR(I) LT X) AND (I LT N)
DOI =1+1

Increments | until a smaller point is found or the end of the
array is reached.
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Another way to accomplish the same thing is with the statements:

P = WHERE(ARR GE X)
P is a vector of the array subscripts where ARR(l) GE X.

I ="P(0)
Saves first subscript.
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Using Subscripts and Matrices

Subscripts provide a means of selecting one or more elements of
an array variable. The values of one or more selected array ele-
ments are extracted when a subscripted variable reference appears
in an expression. Values are stored in selected array elements,
without disturbing the remaining elements, when a subscript ref-
erence appears on the left side of an assignment statement. The
section Assignment Statement on page 53 discusses the use of the
different types of assignment statements when storing into arrays.

The subscripts of an array element denote the address of the ele-
ment within the array. In the simple case of a one-dimensional
array, an n-element vector, elements are numbered starting at 0
with the first element, 1 for the second element, and running to
n — 1, the subscript of the last element.

Arrays with multiple dimensions are addressed by specifying a
subscript expression for each dimension. A two-dimensional
array, a matrix, with n columns and m rows, is addressed with a
subscript of the form: (i, j), where 0 < i < nand 0 <j < m. The first
subscript, i, is the column index, and the second subscript, j, is the
row index.
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Not

The notion of columns and rows in PV=WAVE is reversed from
that of linear algebra. The main reason for this is to allow the X
subscript to appear first when subscripting images.

The syntax of a subscript reference is:
variable_name (subscript_list)

Or:
(array_expression) (subscript_list)

The subscript list is simply a list of expressions, constants, or sub-
script ranges which contains the values of the one or more
subscripts. Subscript expressions are separated by commas if there
is more than one subscript. In addition, multiple elements are
selected with subscript expressions that contain either a contigu-
ous range of subscripts or an array of subscripts.

Example of a Subscript Reference

Subscripts may be used either to retrieve the value of one or more
array elements or to designate array elements to receive new val-
ues. The expression:

ARR(12)
denotes the value of the thirteenth element of ARR (because sub-
scripts start at 0), while the statement:

ARR(12) = 5
stores the number 5 in the thirteenth element of ARR without

changing the other elements.

Elements of multidimensional arrays are specified by using one
subscript for each dimension. In matrices and images, the first sub-
script denotes the column and the second subscript is the row. Like
FORTRAN, but unlike linear algebra, the first subscript, which is
the column number, varies the fastest.
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If ARR is a 2-by-3 array, the elements are stored in memory as fol-
lows:

Apo Ay Lowest memory address

Ag,1 Al

Agp> Aj, Highest memory address

The elements are ordered in memory as: Ag g, Aj o, Ag, 1> Ap, 1>
Ag,2 Ap2-

Images are usually displayed with row zero at the bottom of the
screen, matching the display’s coordinate system, although this
order may be reversed by setting the system variable !Order to a
non-zero value.

Elements of arrays may also be specified using only one subscript,
in which case the array is treated as a vector with the same number
of points. In the above example, A(2) is the same element as
A(0, 1),and A(5) isthe same elementasA(1l, 2).

If an attempt is made to reference a non-existent element of an
array using a scalar subscript (a subscript that is negative or larger
than the size of the dimension minus 1), an error occurs and pro-
gram execution stops.

Subscripts may be any type of array or scalar expression. If a sub-
script expression is not integer, a longword integer copy is made
and used to evaluate the subscript.

“Extra” Dimensions

When creating arrays, PV=WAVE eliminates all “degenerate”
trailing dimensions of size 1. Thus, the statements:

A = INTARR(10, 1)
INFO, A

print the following:
A INT = Array(10)

This removal of superfluous dimensions is usually convenient, but
it can cause problems when attempting to write fully general pro-
cedures and functions. Therefore, PV=WAVE allows you to
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specify “extra” dimensions for an array as long as the extra dimen-
sions are all zero. For example, consider a vector defined as:

ARR = INDGEN(10)

The following are all valid references to the 6th element of ARR:

ARR(5)

ARR(5, 0)

ARR(5, 0, 0, *, 0)
Thus, the automatic removal of degenerate trailing dimensions
does not cause problems for routines that attempt to access the
resulting array.

Subscripting Scalars

References to scalars may be subscripted. All subscripts must be
zero. For example, the following statements print the value of 5,
and then assign the scalar variable a value of 6.

a=>5

PRINT, a(0)

a(0) =6
Subscript Ranges

Subscript ranges are used to select a subarray from an array by giv-
ing the starting and ending subscripts of the subarray in each
dimension.

Subscript ranges may be combined with scalar and array sub-
scripts and with other subscript ranges. Any rectangular portion of
an array may be selected with subscript ranges.

There are four types of subscript ranges:

* Arange of subscripts, written (e0 : el), denoting all elements
whose subscripts range from the expression €0 to el. e0 must
not be greater than el.
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For example, if the variable VEC is a 50-element vector,
VEC(5 : 9)

is a 5-element vector composed of

[VEC(5), ..., VEC(9)]

All elements from a given element to the last element of the
dimension, written as (E : *).

Using the above example,
VEC(10 : *)
is a 40-element vector made of

[VEC(10), ..., VEC(49)]

A simple subscript, (n). When used with multidimensional
arrays, simple subscripts specify only elements with sub-
scripts equal to the given subscript in that dimension.

All elements of a dimension, written (*). This form is used
with multidimensional arrays to select all elements along the
dimension.

For example, it ARR is a 10-column by 12-row array,
ARR(*, 11)

is the last row of ARR (i.e., a 10-element row vector), com-
posed of elements

[ARR(0, 11), ARR(1, 11), ..., ARR(9, 11)]
Similarly,

ARR(O0, *)

is the first column of ARR,

[ARR(0, 0), ARR(O, 1), ..., ARR(O0, 11)]

and its dimensions are 1-column by 12-rows.

Subscript Ranges
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Multidimensional subarrays may be specified using any combina-
tion of the above forms. For example,

ARR(*, 0 : 4)

is made from all columns of rows 0 to 4 of ARR, or a 10-column,
5-row matrix.

Table 5-1 summarizes the possible forms of subscript ranges.

Table 5-1: Subscript Ranges

Form Meaning
E A simple subscript expression
el : el Subscript range from e0 to el
E:* All points from element E to end
* All points in the dimension

Structure of Subarrays

The dimensions of the extracted subarray are determined by the
size in each dimension of the subscript range expression. In gen-
eral, the number of dimensions is equal to the number of subscripts
and subscript ranges. The size of the nth dimension is equal to 1 if
a simple subscript was used to specify that dimension in the sub-
script; otherwise it is equal to the number of elements selected by
the corresponding range expression.

Degenerate dimensions (trailing dimensions whose size is equal to
1) are removed. This was illustrated in the above example by the
expression ARR (*, 11) which resulted in a row vector with a
single dimension because the last dimension of the result was 1
and was removed. On the other hand, the expression ARR (0, *)
became a column vector with dimensions of (1, 12) showing
that the structure of columns is preserved because the dimension
with a size of 1 does not appear at the end.
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Using the examples of VEC, a 50-element vector, and A, a
10-column by 12-row array, some typical subscript range expres-
sions are:

VEC(5 : 10)
Points 5 to 10 of VEC, a 6-element vector.

VEC(I - 1 : I + 1)
3-point neighborhood around I. [VEC(l - 1), VEC(l), VEC(l + 1)].

VEC(4 : *)
Points in VEC from VEC(4) to the end, a 50 — 4 = 46-element
vector.

A(3, *)
The fourth column of A, a 1-by-12 column vector. [A(3, 0),
A3, 1), ..., A3, 11)].

A(*, 0)
The first row of A, a 10-element row vector. Note that the last
dimension was removed because it was degenerate.

A(X -1 :Xx+1, ¥Y-1:Y+1)
The 9-point neighborhood surrounding A(X,Y), a 3-by-3 array:

Ay 1y-1 Bxy-1 Bxary
ax—1 Wy ax,y axn Yy
ax—-1 y+1 ax,y+1 an‘l y+1

A(3 : 5, *)
Three columns of A, a 3-by-12 subarray:

Q30 Q0 Aso
a3y 84y Ay

A3y Qa1 Asn

See the section Assignment Statement on page 53 for information
describing the assigning of values to subarrays.

Structure of Subarrays
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Arrays as Subscripts to Other Arrays

V(s) =

Example

Arrays may be used to subscript other arrays. Each element in the
array used as a subscript selects an element in the subscripted
array. When used with subscript ranges, more than one element is
selected for each subscript element.

If no subscript ranges are present, the length and structure of the
result is the same as that of the subscript expression. The type of
the result is the same as that of the subscripted array. If only one
subscript is present, all subscripts are interpreted as if the sub-
scripted array has one dimension.

In the simple case of a single subscript which is an array, the pro-
cess may be written as:

Vg, if0 =S8, <n
V, ifSi<0

Vy_, ifSizn

( for0 <i<m)

assuming that the vector V has n elements, and S has m elements.
The result V(S) has the same structure and number of elements
as does the subscript vector S.

If an element of the subscript array is less than or equal to zero, the
first element of the subscripted variable is selected. If an element
of the subscript is greater than or equal to the last subscript in the
subscripted variable (¥, above), the last element is selected.

A=1(6,5,1, 8, 4, 3]
B = [0, 2, 4, 1]

C = A(B)

PRINT, C

6145
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The first element is 6 because it is in the zero position of A. The
second is 1 because the value in B of 2 indicates the third position
in A, and so on.

As another example, assume the variable A is a 10-by-10 matrix.
The expression:

A(INDGEN(10) * 11)

yields a 10-element vector equal to the diagonal elements of A.
The subscripts of the diagonal elements, Ag g, Aj 1, s Ay, -1
are equal to 0, 11, 22, ..., 99, when subscripted with a single sub-
script.

The elements of the vector INDGEN(10) * 11 are also equal to
0, 11,22, ..., 99. Applying the vector as a subscript selects the
diagonal elements.

The WHERE function, which returns a vector of subscripts, may
be used to select elements of an array using expressions similar to:

A(WHERE (A GT 0))

which results in a vector composed only of the elements of A that
are greater than 0.

Combining Array Subscripts with Others

Array subscripts may be combined with:
*  Subscript ranges

* Simple scalar subscripts

*  Other array subscripts

When it encounters a multidimensional subscript that contains one
or more subscript arrays, PV=WAVE builds an array of subscripts
by processing each subscript, from left to right. The resulting array
of subscripts is then applied to the variable that is to be sub-
scripted.

As with other subscript operations, trailing degenerate dimensions
(those with a size of 1) are eliminated.
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Combining with Subscript Ranges

Example

When combining an array subscript with a subscript range, the
result is an array of subscripts constructed by combining each ele-
ment of the subscript array with each member of the subscript
range. Combining an n-element array with an m-element subscript
range yields an nm-element subscript. Each dimension of the
result is equal to the number of elements in the corresponding sub-
script array or range.

For example, the expressionA([1, 3, 5], 7 : 9)isa9-
element, 3-by-3 array composed of the elements:

A7 Az7 Asgz
1,8 Azs Asg
A9 Az Asg
Each element of the 3-element subscript array (1, 3, 5) is com-
bined with each element of the 3-element range (7, 8, 9).

The common process of zeroing the edge elements of a two-
dimensional n-by-m array is:

A(*, [0, M -1]) =0
Zeroes first and last rows.

A([0, N -1], *) =0
Zeroes first and last columns.

Combining with Other Subscript Arrays

When combining two subscript arrays, each element of the first
array is combined with the corresponding element of the other
subscript array. The two subscript arrays must have the same num-
ber of elements. The resulting subscript array has the same number
of elements as its constituents.

For example, the expression A([1, 3], [5, 9]) yields the
elements A; sand Aj g.
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Combining with Scalars

Combining an n-element subscript range or n-element subscript
array with a scalar yields an n-element result. The value of the sca-
lar is combined with each element of the range or array.

For example, the expressionA([1, 3, 5], 8) yields the 3-
element vector composed of the elements A, g, A3 g,and A5 g. The
second dimension of the result is 1 and is eliminated because it is
degenerate. The expressionA(8,[1, 3, 5]) isthe 1-by-3 col-
umn vector: Ag ;, Ag 3, and Ag s, illustrating that leading
dimensions are not eliminated.

Storing Elements with Array Subscripts

One or more values may be stored in selected elements of an array
by using an array expression as a subscript for the array variable

appearing on the left side of an assignment statement. Values are

taken from the expression on the right side of the assignment state-
ment and stored in the elements whose subscripts are given by the
array subscript. The right-hand expression may be either a scalar

or array.

The subscript array is converted to longword type before use if
necessary. Regardless of structure, this subscript array is inter-
preted as a vector.

See Assignment Statement on page 53 for details and examples of
storing with vector subscripts.
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Example

A([2, 4, 6]) =0

zeroes elementsA(2),A(4),and A(6), without changing other
elements of A. The following statement:

A([2, 4, 6]) = [4, 16, 36]

is equivalent to the statements:

A(2) = 4
A(4) = 16
A(6) = 36

One way to create a square n-by-n identity matrix is:

A = FLTARR(N, N)
A(INDGEN(N) * (N + 1)) = 1.0

The expression INDGEN(N) * (N + 1) results in a vector con-
taining the subscripts of the diagonal elements [0, 7+ 1,21+ 2, ...,
(n—1)(n + 1)]. Yet another way is to use two array subscripts:

A = FLTARR(N, N)
A(INDGEN(N), INDGEN(N)) = 1.0

which creates the array subscripts: [(0, 0), (1, 1), ..., (n =1, n - 1)].
The statement:

A(WHERE(A LT 0)) = -1
sets negative elements of A to minus 1. The statements:

A = FLTARR(10, 10)
A(INDGEN(10) * 11) = 1

create a 10-by-10 identity matrix.
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Memory Order

In certain circumstances, such as computationally intensive oper-
ations on very large images or matrices, it is useful to know the
memory order of the elements in the array. Given a 2 x 3 array
created with the PV=-WAVE statement

a = INTARR(2, 3)

the elements of A are ordered in memory as A, o, A o, Ag 1> Ay >
AO.Z’ AI,Z'

Knowledge of the memory order is also important when attempt-
ing to subscript multidimensional arrays with a single subscript.
Elements of multidimensional arrays can be specified using only
one subscript, in which case the array is treated as a vector with the
same number of points. In the above example, A (2) is the same
element as A (0,1) and A (5) is the same elementas A (1,2) .

Matrices

Reading and Printing Matrices Interactively

Matrices can be entered interactively using the RM procedure and
printed to the screen using PM. In this example, a matrix is inter-
actively entered and printed along with its inverse. (This example
uses the PV=WAVE Advantage function INV.)

RM, a, 3, 3
Enter 3 by 3 matrix A.

row 0: 3 1 2
row 1: 4 51

row 2: 7 3 9
User is prompted to enter the rows of the matrix.

Memory Order
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PM, a
Print the matrix.

3.00000 1.00000 2.00000
4.00000 5.00000 1.00000
7.00000 3.00000 9.00000
PM, INV(a)
Print the inverse of A.
0.823530 -0.0588235 -0.176471
-0.568628 0.254902 0.0980392
-0.450980 -0.0392157 0.215686

The matrix multiplication operator is “#”. For instance

RM, p, , 2
row 0O:

row 1:

R I« ) B VS Tt -4

row 3:

4

2

1

row 2: 5
0

Enter 4

o

y 2 matrix P.

RM, q, 2, 3
Enter 2 by 3 matrix Q.

row 0: 1 3 5
row 1l: 2 4 6

PM, p # q

Print the matrix product of P and Q.
10.0000 22.0000 34.0000
7.00000 15.0000 23.0000
17.0000 39.0000 61.0000
14.0000 28.0000 42.0000

PV=WAVE Programmer’s Guide for Advantage and CL



Matrices also can be entered elementwise, starting with the (0, 0)
subscript. As is standard in mathematics, the first subscript refers
to the row and the second to the column. For example:

w = FLTARR(3, 3)
Allocate w to be a 3 by 3 float array.

w(0, 0) =
w(0, 1) =
w(0, 2) =
w(l, 0) =
w(l, 1) =
w(l, 2) =
w(2, 0) =
w(2, 1) =
w(2, 2) =9

Assign values to w.

O o U W N

PM, w
Print W as a matrix.

1.00000 2.00000 3.00000

4.00000 5.00000 6.00000

7.00000 8.00000 9.00000

PRINT, w

1.00000 4.00000 7.00000

2.00000 5.00000 8.00000

3.00000 6.00000 9.00000
Print W as an array. Note that it is the transpose of the previous
statement.
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In a matrix, the elements are stored columnwise; i.e., the elements
of the 0-th column are first, followed by the elements of the 1-st

row, etc. Continuing the above example, the elements in the 0-th
column (1, 4, 7) come first, followed by those in the 1-st column

(2,

5, 8), etc.

FOR k = 0, 8 DO PRINT, k, w(k)

1.00000
4.00000
7.00000
2.00000
5.00000
8.00000
3.00000
6.00000
9.00000

W N oW N = O

Reading a Matrix From a File

In this example, the RMF procedure is used to read a matrix con-
tained in an external file. The file cov.dat contains the
following data:

1.0

0.523
.395
.471
.346
.426
.576
.434
0.639

O O O O o o

0.523 0.395 0.471 0.346 0.426 0.576
1.0 0.479 0.506 0.418 0.462 0.547
0.479 1.0 0.355 0.27 0.254 0.452
0.506 0.355 1.0 0.691 0.791 0.443
0.418 0.27 0.691 1.0 0.679 0.383

0.462 0.254 0.791 0.679 1.0

0.372

0.547 0.452 0.443 0.383 0.372 1.0
0.283 0.219 0.285 0.149 0.314 0.385 1.0

0.645 0.504 0.505 0.409 0.472 0.68

0.434
0.283
0.219
0.285
0.149
0.314

0.639
0.645
0.504
0.505
0.409
0.472

0.385 0.68

0.47

0.47
1.0

After reading the matrix, principal components are computed for

a nine-variable covariance matrix. (This example uses the

PV=WAVE Advantage PRINC_COMP function.)
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OPENR, unit, ‘cov.dat’, /Get_Lun
RMF, unit, covariances, 9, 9
CLOSE, unit

values = PRINC_COMP(covariances)
PM, values, Title = "Eigenvalues
Eigenvalues:

4.67692
1.26397
.844450
.555027
.447076
.429125
.310241
.277006
.196197

O O O O O O O

Printing a Matrix to a File

o M
.

This example retricves a statistical data set using the PV=WAVE
Advantage function STATDATA, then outputs the matrix to the

file stat.dat.

stats = STATDATA(S)
Get the data from STATDATA.

PM, stats
Print the 13 by 5 matrix to standard output.

7.00000 26.0000 6.00000 60.0000
1.00000 29.0000 15.0000 52.0000
11.0000 56.0000 8.00000 20.0000
11.0000 31.0000 8.00000 47.0000
7.00000 52.0000 6.00000 33.0000
11.0000 55.0000 9.00000 22.0000
3.00000 71.0000 17.0000 6.00000
1.00000 31.0000 22.0000 44.0000

78.5000
74.3000
104.300
87.6000
95.9000
109.200
102.700
72.5000

Matrices
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2.00000 54.0000 18.0000 22.0000 93.1000

21.0000 47.0000 4.00000 26.0000 115.900

1.00000 40.0000 23.0000 34.0000 83.8000

11.0000 66.0000 9.00000 12.0000 113.300

10.0000 68.0000 8.00000 12.0000 109.400
Print the 13 by 5 matrix to a file.

OPENW, unit, ’‘stat.dat’, /Get_Lun

PMF, unit, stats
Use PMF to output the matrix.

CLOSE, unit
Close the file.

Subarrays

Using subscript ranges, it is possible to extract submatrices. For
instance, the 0-th and 2-nd row of matrix w are extracted by using
the following statements:

PM, w
Print W as a matrix.

1.00000 2.00000 3.00000
4.00000 5.00000 6.00000
7.00000 8.00000 9.00000

PM, w([0, 2], *)

1.00000 2.00000 3.00000
7.00000 8.00000 9.00000
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Matrix Expressions

Complicated matrix expressions are possible. Using the matrices
defined above, and the PV=WAVE Advantage INV function, the
following statements compute the inverse of a:

PM, a

Print the matrix.
3.00000 1.00000 2.00000
4.00000 5.00000 1.00000
7.00000 3.00000 9.00000

PM, a # INV(a)
AA‘lshomdbeidenmy.Enorduetoroundoﬂ

1.00000 0.00000 0.00000
-2.98023e-07 1.00000 1.49012e-08
-9.53674e-07 0.00000 1.00000

In the following code segment, (3.5A + W) (Q"Q) is computed:

PM, g
1.00000 3.00000 5.00000
2.00000 4.00000 6.00000

Compute and print (3.5A + W)(QTQ).

PM, (3.5 * a + w) # (TRANSPOSE(q) # q)

288.000 654.000 1020.00
499.000 1131.00 1763.00
1049.50 2388.50 3727.50
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Working with Structures

Introduction to Structures

PV=WAVE supports structures and arrays of structures. A struc-
ture is a collection of scalars, arrays, or other structures contained
in a variable. Structures are useful for representing data in a natu-
ral form, for transferring data to and from other programs, and for
containing a group of related items of various types.

Before a structure can be used, it must be defined. When you
define a structure, you actually create a new PV=WAVE data type.
The definition includes a structure name and a list of structure
fields. Each structure field is given a tag name and tag definition
(data type). The tag definition may be an expression or a variable.
It defines the data type of the data that can be placed in the field.
A structure definition, per se, does not contain any data values;
however, a variable of a particular structure type always contains
data.

A structure field may be defined as any type of data representable
by PV-WAVE. Fields may contain scalars, arrays of the seven
basic data types, and even other structures or arrays of structures.

101



Just as you cannot alter the basic definition of an integer or float-
ing-point data type in PV=WAVE, you cannot alter a structure
definition after it has been created. You can, however, delete a
structure definition as long as it is not currently being referenced
by any variables. See the next section for more information on
deleting structure definitions.

When referred to in PV=WAVE, structure definitions must be
enclosed in braces. For example:

PRINT, {struct_name}

The braces distinguish structure definitions from variable names,
function names, or other identifiers.

Defining and Deleting Structures

A structure is created by executing a structure definition expres-
sion. This is an expression of the following form:

{ Structure_name, Tag_name,, : Tag_defy, ... : ...,
Tag_name,, : Tagdef, }

Tag names must be unique within a given structure, although the
same tag name may be used in more than one structure. Structure
and tag names follow the same rules as all PV=-WAVE identifiers:
they must begin with a letter, following characters may be letters,
digits, or the underscore or dollar sign characters, and case is
ignored.

As mentioned above, each tag definition is a constant, variable, or
expression whose type and dimension defines the type and dimen-
sion of the field. The result of a structure definition expression is a
structure definition that is global in scope and can be used to create
variables of the particular structure type.

A structure that has already been defined may be referred to by
simply enclosing the structure’s name in braces:

variable = { Structure_name }
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The variable created as a result of this command is a structure of
the designated name with all of its fields filled with zeros or null
strings.

The variable created by the above statement and the structure def-
inition {Structure_name} are separate entities. The variable is said

to be of type {Structure_name}. The definition {Structure_name}

is analogous to any data type, such as integer or double. Just as any
number of values can be of type integer, any number of variables

may reference a given structure definition.

Not

When referring to a structure definition, the tag names need not be
present, as in:

variable = { Structure_name, expry, ..., expr, }

All of the expressions are converted to the type and dimension of
the original tag definition. If a structure definition of the first form
(where the tag names are present) is executed and the structure
already exists, each tag name and the structure of each tag field
definition must agree with the original definition or an error will
result.

Example of Defining a Structure

Assume a star catalog is to be processed. Each entry for a star con-
tains the following information: Star name, right ascension,
declination, and an intensity measured each month over the last
12 months. A structure for this information is defined with the
PV-WAVE statement:

STAR = { CATALOG, NAME: ’'’, RA: 0.0, $
DEC: 0.0, INTEN: FLTARR(12) }

This structure definition is the basis for all examples in this chap-
ter.

The above statement defines a structure type named CATALOG in
a variable named STAR, which contains four fields. The tag names
are NAME, RA, DEC, and INTEN. The first field, with the tag
NAME, contains a scalar string as given by its tag definition; the
following two fields each contain floating-point scalars, and the

Defining and Deleting Structures 103



fourth field, INTEN, contains a 12-element floating-point array.
Note that the type of the constants, 0.0, is floating point. If the con-
stants had been written as 0 the fields RA and DEC would contain
integers.

Defining a Structure within a Structure

The following example shows how to embed or nest a structure
within another structure definition.

STAR = {CATALOG, NAME:’'’, RA=0.0}
Create structure, STAR, of type CATALOG.

STAR2 = {CATALOG2, P0S:0.0, DEC:0}
Create a second structure, STAR2, of type CATALOG2.

ALL = {TOTAL, TAGl:{CATALOG}, TAG2:STAR2}

Create a third structure ALL which contains the previously
defined structures as fields. Note that the tag definition can be
either the name of a structure definition ({CATALOG}) or a vari-
able of type structure (STAR2).

Deleting a Structure Definition

The DELSTRUCT procedure lets you delete a structure definition,
as long as the structure definition is not referenced by any vari-
ables. To determine if a structure definition is referenced, use the
STRUCTREF procedure. Variables that are local to a procedure or
function can be deleted only by exiting the procedure or function.
You can delete variables at the SMAINS level with the DELVAR
procedure. Because structure definitions can include other struc-
ture definitions, the parent structure definition must be deleted
before any nested structure definitions can be deleted.

Deleting a structure definition frees all the memory used to store

the structure name, the tag names, and the information about the

data type of each structure element. If you want to delete a struc-
ture to free memory, then you must delete all referenced variables
as well. However, if you simply want to reuse the structure name,
then you do not have to delete all the referenced variables. Use the
Rename keyword with the DELSTRUCT procedure. This changes
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the name of the structure to a new unique name and frees the orig-
inal name for reuse. This new name is chosen by the system. You
cannot specify the name directly. All variables that referenced the
original structure name will automatically reference the new
name.

For more information on DELSTRUCT and STRUCTREEF, see
the PV=WAVE Reference.

Creating Unnamed Structures

As noted previously, a typical structure definition consists of a
name and a list of fields. You can also create a structure that you
do not name.

Unnamed structures are useful if you:
» do not want to use a structure definition globally.
* do not want to invent new names for structure definitions.

»  want the structure definition to be deleted automatically when
it is no longer referenced.

»  want to create a structure-type variable that contains an array
field that can vary.

Scope of Named and Unnamed Structures

Named structure definitions are global in scope. A named structure
definition is created only once and then can be referenced by any
number of variables. It is important to note that a named structure
definition is not associated directly with any particular variable.

An unnamed structure, on the other hand, is closely associated
with a specific variable. When the variable that is associated with
an unnamed structure is deleted, so is the unnamed structure defi-
nition.
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Syntax of an Unnamed Structure Definition

The syntax of an unnamed structure definition is:

x = {, tag_name;: tag_def;, tag_name,: tag_def,}

The data type of variable x references the unnamed structure defi-
nition. Unlike named structure definitions, when all variables that
reference an unnamed structure definition are deleted, the
unnamed structure definition is also deleted. If you copy a variable
that references an unnamed structure definition (e.g.,y = x), then
both variables reference the same unnamed structure definition.
Only when both variables are deleted will the unnamed structure
definition be deleted.

Creating Variable-length Array Fields

The unnamed structure definition can be useful if you want to cre-
ate a structure definition that contains array fields whose lengths
can change. For example, suppose you want to create several vari-
ables that have the same structure except that one element is an
array that you want to have different lengths for different vari-
ables. Using named structures, you would have to create a
different structure for each case (because named structure defini-
tions cannot be altered). For example:

a={structa, xdim:2, ydim:4, arr:intarr(2,4)}
b={structb, xdim:2, ydim:8, arr:intarr(2,8)}

However, the unnamed structure allows you to solve this problem.
For example, the following function returns a structure-type vari-
able whose tag names are the same, but whose array length is
different for each variable:

function my_ struct, x, y
RETURN({ , xdim:x, ydim:y, array:intar-
r(x,y)})
END
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Now, you can create a and b as follows:

a
b

my_struct(2, 4)

my_struct(2, 8)

Internal Names of Unnamed Structures

PV=WAVE generates a name internally for an unnamed structure
definition. This name always begins with a $. This ensures that an
unnamed structure definition will never conflict with a named
structure definition (because identifiers cannot begin with $ in
PV-WAVE).

The INFO command lets you see this internal name:

INFO, a, /Struct

*** Structure $2, 3 tags, 20 length:
XDIM INT 2
YDIM INT 4
ARRAY INT Array(2, 4)

Do not attempt to use the internal name for an unnamed structure
in any other PV=WAVE command. For example:

c = {82}
or

PRINT, STRUCTREF({$2})

In these cases, the $ character is interpreted as a line continuation
character. The remainder of the line after $ is ignored, and
PV=WAVE waits for you to enter the rest of the command on the
next line. No error message is displayed until you enter another
line that does not contain a $.
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Structure References

The basic syntax of a reference to a field within a structure is:

Variable_name . Tag_name

Variable_name must be a variable that contains a structure;
Tag_name is the name of the field and must exist for the structure.

If the field referred to by the tag name is itself a structure, the tag
name may optionally be followed by one or more additional tag
names. For example:

VAR.TAG1.TAG2

This nesting of structure references may be continued up to ten
levels. Each tag name, except possibly the last, must refer to a field
that contains a structure.

’

Subscripted Structure References

In addition, a subscript specification may be appended to the vari-
able or tag names if the variable is an array of structures, or
if the field referred to by the tag contains an array:

Variable_name . Tag_name(Subscripts)

Variable_name(Subscripts) . Tag_name ...

or

Variable_name(Subscripts) . Tag_name(Subscripts)

Each subscript is applied to the variable or tag name it immedi-
ately follows.

The syntax and meaning of the subscript specification is similar to
simple array subscripting: it may contain a simple subscript, array
of subscripts, or a subscript range. See Chapter 6, Using Sub-
scripts, for more information about subscripts.

If a variable or field containing an array is referenced without a
subscript specification, all elements of the item are affected. Sim-
ilarly, when a variable that contains an array of structures is
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referenced without a subscript but with a tag name, the designated
field in all array elements is affected.

The complete syntax of references to structures is:
Structure_ref := Variable_name [(subscripts)] . Tags
Tags := [Tags.] Tag
Tag := Tag_name [(subscripts)]

Optional items are enclosed in square brackets, [ ]. For example,
all of the following are valid structure references:

A.B

A.B(N, M)
A(12).B
A(3:5).B(*, N)
A(12).B.C(X, *)

The semantics of storing into a structure field using subscript
ranges are slightly different than that of simple arrays. This is
because the dimension of arrays in fields is fixed. See Storing into
Structure Array Fields on page 112.

Examples of Structure References

The name of the star contained in STAR is referenced as
STAR.NAME, the entire intensity array is referred to as
STAR.INTEN, while the nth element of STAR. INTEN is
STAR.INTEN(N). The following are valid PV-WAVE state-
ments using the CATALOG structure:

STAR = {CATALOG, NAME: ’'SIRIUS’, RA: 30., $
DEC: 40., INTEN: INDGEN(12)}

Store a structure of type CATALOG into variable STAR.
Define the values of all fields.

STAR.NAME = ’'BETELGEUSE’
Set name field. Other fields remain unchanged.

PRINT, STAR.NAME, STAR.RA, STAR.DEC
Print name, right ascension, and declination.
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Q = STAR.INTEN(5)

Set Q to the value of the 6th element of STAR.INTEN. Q will be
a floating-point scalar.

STAR.RA = 23.21
Set RA field to 23.21.

STAR.INTEN = 0

Zero all 12 elements of intensity field. Because the type and size
of STAR.INTEN are fixed by the structure definition, the seman-
tics of assignment statements are somewhat different than with
normal variables.

B = STAR.INTEN(3:6)
Store 4th through 7th elements of INTEN field in variable B.

STAR.NAME = 12

The integer 12 is converted to string and stored in the name field
because the field is defined as a string.

MOON = STAR

Copy STAR to MOON. The entire structure is copied and MOON
contains a CATALOG structure.

Using INFO with Structures

Use INFO, /Structure to determine the type, structure, and
tag name of each field in a structure. In the example above, a struc-
ture was stored into variable STAR. The statement:

INFO, /Structure, STAR
prints the following information:

** Structure CATALOG, 4 tags, 60 length:

NAME STRING ‘(null)"’
RA FLOAT 0.0

DEC FLOAT 0.0

INTEN FLOAT Array(12)

Calling INFO with the Structure keyword and no parameters
prints a list of all defined structures and tag names. In addition to
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the Structure keyword, the Userstruct and Sysstruct INFO key-
words can also be used to obtain information about structures. See
Chapter 14, Getting Session Information, for information on these
keywords.

Parameter Passing with Structures

As explained in Parameter Passing Mechanism on page 246,
PV=WAVE passes simple variables by reference and everything
else by value.

An entire structure is passed by reference by simply using the
name of the variable containing the structure as a parameter.
Changes to the parameter within the procedure are passed back to
the caller.

Fields within a structure are passed by value. For example, to print
the value of STAR . NAME:

PRINT, STAR.NAME

Any reference to a structure with a subscript or tag name is evalu-
ated into an expression, hence STAR . NAME is an expression and
is passed by value. This works as cxpected unless the called pro-
cedure returns information in the parameter, as in the call to
READ:

READ, STAR.NAME

which does not read into STAR . NAME, but interprets its parameter
as a prompt string. The proper code to read into the field is:

B = STAR.NAME
Copy type and attributes to variable.

READ, B
Read into a simple variable.

STAR.NAME = B
Store result into field.
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Storing into Structure Array Fields

Rule 1

Rule 2

As was mentioned above, the semantics of storing into structure
array fields is slightly different than storing into simple arrays. The
main difference is that with structures a subscript range must be
used when storing an array into part of an array field. With normal
arrays, when storing an array inside part of another array, use the
subscript of the lower-left corner, not a range specification.

Other differences occur because the size and type of a field
are fixed by the original structure definition and the normal
PV=WAVE semantics of dynamic binding are not applicable.

The rules for storing into array fields are:

VAR.TAG = scalar_expr

The field TAG is an array. All elements of VAR .TAG are
set to scalar_expr. For, example:
STAR.INTEN = 100

Sets all 12 elements of STAR.INTEN to 100.

VAR.TAG = array_expr

Each element of array_expr is copied to the array
VAR.TAG. If array_ expr contains more elements than
does the destination array an error results. If it contains
fewer elements than VAR.TAG, the unmatched elements
remain unchanged. Example:
STAR.INTEN = FINDGEN(12)

Sets STAR.INTEN to the 12 numbers 0, 1, 2, ..., 11.
STAR.INTEN = [1, 2]

Sets STAR.INTEN(0) to 1 and STAR.INTEN(1) to 2. The
other elements remain unchanged.
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Rule 3
VAR.TAG(subscript) = scalar_expr

The value of the scalar expression is simply copied into
the designated element of the destination. If subscript is
an array of subscripts, the scalar expression is copied into
the designated elements. Example:
STAR.INTEN(5) = 100

Sets the 6th element of STAR.INTEN to 100.
STAR.INTEN([2, 4, 6]) = 100.

Sets elements 2, 4, and 6 to 100.

Rule 4
VAR.TAG(subscript) = array_expr

Unless VAR.TAG is an array of structures, the subscript
must be an array. Each element of array_expr is copied
into the element of VAR.TAG given by the corresponding
element subscript. Example:

STAR.INTEN([2, 4, 6]) = [5, 7, 9]

Sets elements 2, 4, and 6 to the values 5, 7, and 9, respec-
tively.

Rule 5
VAR .TAG (subscript_range) = scalar_expr

The value of the scalar expression is stored into each ele-
ment specified by the subscript range. Example:
STAR.INTEN(8 : *) = 5

Sets elements 8, 9, 10, and 11, to the value 5.

Rule 6
VAR.TAG (subscript_range) = array_expr

Each element of the array expression is stored into the ele-
ment designated by the subscript range. The number of
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elements in the array expression must agree with the size
of the subscript range. Example:
STAR.INTEN(3 : 6) = findgen(4)
Sets elements 3, 4, 5, and 6 to the numbers 0, 1, 2, and 3,
respectively.

See Creating Variable-length Array Fields on page 106 for infor-
mation on placing variable-length arrays in structures.

Creating Arrays of Structures

An array of structures is simply an array in which each element is
a structure of the same type. The referencing and subscripting of
these arrays (also called structure arrays) follow essentially the
same rules as simple arrays.

The easiest way to create an array of structures is to use the
REPLICATE function. The first parameter to REPLICATE is a
reference to the structure of each element. Using the above exam-
ple of a star catalog and assuming the CATALOG structure has
been defined, an array which contains 100 elements of the struc-
ture is created with the statement:

CAT = REPLICATE({ CATALOG }, 100)

Alternatively, since the variable STAR contains an instance of the
structure CATALOG:

CAT = REPLICATE(STAR, 100)
Or, to define the structure and an array of the structure in one step:

CAT = REPLICATE({ CATALOG, NAME : '’, §$
RA: 0.0, DEC : 0.0, §$
INTEN : FLTARR(12) }, 100)

The concepts and combinations of subscripts, subscript arrays,
subscript ranges, fields, nested structures, etc., are quite general
and lead to a myriad of possibilities, only a small number of which
can be explained here. In general what seems reasonable usually
works.
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Examples of Arrays of Structures

Using the above definition in which the variable CAT contains a
star catalog of CATALOG structures:

CAT.NAME = 'EMPTY’
Set the NAME field of all 100 elements to EMPTY.

CAT(I) = {CATALOG, ’'BETELGEUSE’, 12.4, $
54.2, FLTARR(12)}
Set the ith element of CAT to the contents of the CATALOG
structure.

CAT.RA = INDGEN(100)
Store a 0.0 into CAT(0).RA, 1.0 into CAT(1).RA, ..., 99.0 into
CAT(99).RA.

PRINT, CAT.NAME + ',’
Prints name field of all 100 elements of CAT, separated by com-
mas.

I = WHERE(CAT.NAME EQ ’'SIRIUS’)
Find index of star with name of SIRIUS.

Q = CAT.INTEN
Extract intensity field from each entry. Q will be a 12-by-100
floating-point array.

PLOT, CAT(5).INTEN
Plot intensity of 6th star in array CAT.

CONTOUR, CAT(5 : 50).INTEN(2:8)
Make a contour plot of the (7, 46) floating-point array taken from
months (2:8) and stars (5:50).

CAT = CAT(SORT (CAT.NAME))

Sort the array into ascending order by names. Store the result
back into CAT.

MONTHLY = CAT.INTEN # REPLICATE(1,100)

Determine the monthly total intensity of all stars in array.
MONTHLY is now a 12-element array.
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Structure Input and Output

Structures are read and written using the formatted and unformat-
ted 1/O procedures READ, READF, PRINT, PRINTF, READU,
and WRITEU. Structures and arrays of structures are transferred
in much the same way as simple data types, with each element of
the structure transferred in order.

Formatted Input and Output with Structures

Writing a structure with PRINT, or PRINTF and the default for-
mat, outputs the contents of each element using the default format
for the appropriate data type. The entire structure is enclosed in
braces: “{ }”. Each array begins a new line.

For example, printing the variable STAR, as defined in the first
example in this chapter, results in the output:

{ SIRIUS 30.0000 40.0000

0.000001.000002.000003.00000
4.000005.000006.000007.00000
8.000009.0000010.000011.0000

}

When reading a structure with READ, or READF and the default
format, white space should separate each element. Reading string
elements causes the remainder of the input line to be stored in the
string element, regardless of spaces, etc.

A format specification may be used with any of these procedures
overriding the default formats. The length of string elements is
determined by the format specification (i.e., to read the next 10
characters into a string field, use an A10 format). For more infor-
mation about format specification, see Explicitly Formatted Input
and Output on page 165.
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Unformatted Input and Output with Structures

Reading and writing unformatted data contained in structures is a
straightforward process of transferring each element without inter-
pretation or modification, except in the case of strings. Each
PV=-WAVE data type, except strings, has a fixed length expressed
in bytes; this length, with the addition of padding, is also the num-
ber of bytes read or written for each element.

All instances of structures contain an even number of bytes. As
with most C compilers, PV=WAVE begins ficlds that are not of
byte type on an even byte boundary. Thus, a “padding byte” may
appear after a byte field to cause the following non-byte type field
to begin on an even byte. A padding byte is never added before a
byte or byte array field. For example, the structure:

{EXAMPLE, T1: 1B, T2: 1}

occupies four bytes. A padding byte is added after field T1 to
cause the integer field T2 to begin on an even byte boundary.

String Input and Output

Strings are exceptions to the above rules because the length of
strings within structures is not fixed. For example, one instance of
the {CATALOG} structure may contain a NAME field with a five-
character name, while another instance of the same structure may
contain a 20-character name.

When reading into a structure field that contains a string,
PV=WAVE reads the number of bytes given by the length of the
string. If the string field contains a 10-character string, 10 charac-
ters are read. If the data read contains a null byte, the length of the
string field is truncated, and the null and following characters are
discarded.

When writing fields containing strings with the unformatted pro-
cedure WRITEU, PV=WAVE writes each character of the string
and does not append a null byte.
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String Length Issues

Reading into or writing out of structures containing strings with
READU or WRITEU is tricky when the strings are not the same
length. For example, it would be difficult for a C program to read
variable-length string data written from a PV-WAVE application
because PV=WAVE does not append a null byte to the string when
it is written out. And from the other side of the coin, it is not pos-
sible to read into a string element using READU unless the
number of characters to read is known. One way around this prob-
lem is to set the lengths of the string elements to some maximum
length using the STRING function with a format specification.

For example, it is easy to set the length of all NAME fields in the
CAT array to 20 characters:

CAT.NAME = STRING(CAT.NAME, Format='(A20)')

This statement will truncate names larger than 20 characters long
and will pad with blanks those names shorter than 20 characters.
The structure or structure array may then be output in a format
suitable to be read by C or FORTRAN programs.

To read into the CAT array from a file in which each NAME field
occupies, for example, 26 bytes:

CAT = REPLICATE( { CATALOG, STRING(’ ', $
Format='(A26)’), 0., 0., FLTARR(12) }, 100)

Make a 100-element array of CATALOG structures, storing
a 26-character string in each NAME field.

READU, 1, CAT
Read the structure.

As mentioned above, 26 bytes will be read for each NAME field.
The presence of a null byte in the file will truncate the field to the
correct number of bytes.
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Advanced Structure Usage

Facilities exist to process structures in a general way using tag
numbers rather than tag names. Tags may be referenced using their
index, enclosed in parenthesis, as follows:

Variable_name . (Tag_index) ... ... ...
The tag index ranges from 0 to the number of fields minus 1.

The N_TAGS function returns the number of fields in a structure.
The TAG_NAMES function returns a string array containing the
names of each tag.

Example of Tag Indicesfe

Using tag indices, and the above-mentioned functions, we specify
a procedure which reads into a structure from the keyboard. The

procedure prompts you with the type, structure, and tag name of

each field within the structure:

PRO READ_STRUCTURE, S

A procedure to read into a structure, S, from the keyboard with
prompts.

NAMES = TAG_NAMES(S)
Get the names of the tags.

FOR I = 0, N_TAGS(S)-1 DO BEGIN
Loop for each field.
A = S.(I)
Define variable A of same type and structure as the ith
field.
INFO, S.(I)
Use INFO to print the attributes of the field.
READ, ’'Enter value for field ', $
NAMES(I), ‘: ', A
Prompt user with tag name of this field, and then read into
variable A.
S.(I) = A
Store back into structure from A.
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ENDFOR
END

Note, in the above procedure the READ procedure reads into the

variable A rather than S. (T ), because S. ( I) is an expression, not
a simple variable reference. Expressions are passed by value; vari-
ables are passed by reference. The READ procedure prompts you

with parameters passed by value and reads into parameters passed
by reference.
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Working with Text

Working with text in PV=WAVE is equivalent to working with
strings. A string is a sequence of 0 to 32,767 characters. Strings
have dynamic length (they grow or shrink to fit), and there is no
need to declare the maximum length of a string prior to using it.
As with any data type, string arrays can be created to hold more
than a single string. In this case, the length of each individual
string in the array depends only on its own length, and is not
affected by the lengths of the other string elements.

Example String Array

In some of the examples in this chapter, it is assumed that a string
array named TREES exists. TREES contains the names of seven
trees, one name per element, and is created using the statement:

TREES = [’'Beech’, ’'Birch’, ’‘Mahogany’, $
'Maple’, 'Oak’, ’'Pine’, ‘Walnut’]

Executing:

PRINT, ’'>' + TREES + '<'
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results in the output:

>Beech< >Birch< >Mahogany< >Maple< >0ak<
>Pine< >Walnut<

Basic String Operations

PV=WAVE supports several basic string operations.

Concatenating Strings

The addition operator, +, is used to concatenate strings.

Formatting
The STRING function is used to format data into a string.

Converting to Upper or Lower Case

The STRLOWCASE function returns a copy of its string argu-
ment converted to lower case. Similarly, the STRUPCASE
function converts its argument to upper case.

Removing White Space

The STRCOMPRESS and STRTRIM functions can be used to
eliminate unwanted white space (blanks or tabs) from their string
arguments.

Determining String Length
The STRLEN function returns the length of its string argument.

Manipulating Substrings

The STRPOS, STRPUT, and STRMID routines locate, insert, and
extract substrings from their string arguments.
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Concatenating Strings

The addition operator concatenates strings. For example, the com-

mand:
A = 'This is ' + 'a concatenation example.’
PRINT, A

results in the output:
This is a concatenation example.

The following PV=WAVE statements build a scalar string contain-
ing a list of the names found in the TREES string array separated
by commas:

NAMES = '’
The list of names.

FOR I = 0, 6 DO BEGIN
IF (I NE 0) THEN NAMES = NAMES + ', '
Add comma before next name.

NAMES = NAMES + TREES(I)
Add the new name to the end of the list.

ENDFOR
PRINT, NAMES
Show the resulting list.

Running the above statements gives the result:

Beech, Birch, Mahogany, Maple, Oak, Pine,
Walnut
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String Formatting
The STRING function has the form:
result = STRING(Expression, ..., Expression,, )

It converts its parameters to characters, returning the result as a
string expression. It is very similar to the PRINT statement, except
that its output is placed into a string rather than being output to the
screen. As with PRINT, the Format keyword can be used to
explicitly specify the desired format. See the discussions of free
format and explicitly formatted 1/0 in Choosing Between Free or
Fixed (Explicitly Formatted) ASCII I/O on page 155 for details on
data formatting.

As a simple example, the following PV-WAVE statements:

A = STRING(Format='("The values are:", $
/, (I))’, INDGEN(5))
Produce a string array.

INFO, A
Show its structure.

FOR I = 0, 5 DO PRINT, A(I)
Print the result.

produce the following output:
A STRING = Array(6)

The values are:

S W N = o
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Using STRING with Byte Arguments

There is a close association between a string and a byte array — a
string is simply an array of bytes that is treated as a series of ASCII
characters. It is therefore convenient to be able to switch between
them easily.

When STRING is called with a single argument of type byte and
the Format keyword is not used, STRING does not work in its nor-
mal fashion. Instead of formatting the byte data and placing it into
a string, it returns a string containing the byte values from the orig-
inal argument. Thus, the result has one less dimension than the
original argument. A two-dimensional byte array becomes a vec-
tor of strings, a byte vector becomes a scalar string. However, a
byte scalar also becomes a string scalar. For example, the state-
ment:

PRINT, STRING([72B, 101B, 108B, 108B, 111B])
produces the output:

Hello

This occurs because the argument to STRING, as produced by the
array concatenation operator [ ], is a byte vector. Its first element
is 72B which is the ASCII code for “H”, the second is 101B
which is an ASCII “e”, and so forth.

As discussed in the section Explicitly Formatted Input and Output
on page 165, it is easier to read fixed length string data from binary
files into byte variables instead of string variables. It is therefore
convenient to read the data into a byte array and use this special
behavior of STRING to convert the data into string form.

Another use for this feature builds strings that have unprintable
characters in them in a way that doesn’t actually require entering
the character directly. This results in programs that are easier to
read, and which also avoid file transfer difficulties. (Some forms
of file transfer have problems transferring unprintable characters).

String Formatting
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For example:

tab = STRING(9B)
9 is the decimal ASCII code for the tab character.

bel = STRING(7B)
7 is the decimal ASCII code for the bell character.

PRINT, 'There is a’, tab, ’'tab here.’, bel

Output a line containing a tab character, and ring the terminal
bell.

Executing these statements gives the output:

There is a tab here.
and rings the bell.

Due to the way in which strings are implemented in PV=WAVE,
applying the STRING function to a byte array containing a null
(zero) value will result in the resulting string being truncated at
that position. Thus, the statement:

PRINT, STRING([65B, 66B, 0B, 67B])
produces the output:
AB

because the null byte in the third position of the byte array argu-
ment terminates the string and hides the last character.

The BYTE function, when called with a single argument of type
string, performs the inverse operation to that described here,
resulting in a byte array containing the same byte values as its
string argument. For additional information about the BYTE func-
tion, see Type Conversion Functions on page 36.
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Converting Strings to Upper or Lower Case

The STRLOWCASE and STRUPCASE functions convert their
arguments to lower or upper case. They have the form:

result = STRLOWCASE(string)
result = STRUPCASE(string)

where string is the string to be converted to lower or upper case.

The following PV-WAVE statements generate a table of the con-
tents of TREES showing each name in its actual case, lower case,
and upper case:

FOR I = 0, 6 DO PRINT, TREES(I), $
STRLOWCASE (TREES(I)), $
STRUPCASE (TREES(I)), $
Format = ’'(A,T15,A,T30,A)’

The resulting output from running this statement is:

Beech beech BEECH

Birch birch BIRCH
Mahogany mahogany MAHOGANY
Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut  walnut WALNUT

A common use for case folding occurs when writing PV=WAVE
procedures that require input from the user. By folding the case of
the response, it is possible to handle responses written in any case.
For example, the following PV=WAVE statements can be used to
ask “Yes or No” style questions:

ANSWER = '’
Create a string variable to hold the response.

READ, 'Answer Yes or No: ’, ANSWER

IF (STRUPCASE (ANSWER) EQ 'YES’) THEN
PRINT, ’'Yes’ else PRINT, ’'No’
Compare the response to the expected answer.
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Removing White Space From Strings

The STRCOMPRESS and STRTRIM functions remove unwanted
white space (tabs and spaces) from a string. This can be useful
when reading string data from arbitrarily formatted strings.

STRCOMPRESS returns a copy of its string argument with all
white space replaced with a single space, or completely removed.
It has the form:

result = STRCOMPRESS(string)

where string is the string to be compressed. The default action is
to replace each section of white space with a single space. Use of
the Remove_All keyword causes white space to be completely
eliminated. For example:

A = ' This is a poorly spaced sentence.’

Create a string with undesirable white space. Such a string might
be the result of reading user input with a READ statement.

PRINT, ’'>’, STRCOMPRESS(A), ’<’
Print the result of shrinking all white space to a single blank.

PRINT, ’'>’', STRCOMPRESS(A, /REMOVE_ALL), '<’'
Print the result of removing all white space.

results in the output:

> This is a poorly spaced sentence.<
>Thisisapoorlyspacedsentence.<

STRTRIM returns a copy of its string argument with leading and/
or trailing white space removed. It has the form:

result = STRTRIM(string[, flag])

where string is the string to be trimmed and flag is an integer that
indicates the specific trimming to be done. If flag is 0, or is not
present, trailing white space is removed. If it is 1, leading white
space is removed. Both are removed if it is equal to 2.
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As an example:
A= This string has leading and ' + $
'railing white space ’
Create a string with unwanted leading and trailing blanks.

PRINT, '>’, STRTRIM(A), '<’
Remove trailing white space.

PRINT, '>', STRTRIM(A, 1), '<'
Remove leading white space.

PRINT, '>', STRTRIM(A, 2), '<’
Remove both.

Executing these statements produces the output:

>This string has leading and trailing white space<
>This string has leading and trailing white space <
>This string has leading and trailing white space<

When processing string data, it is often useful to be able to remove
leading and trailing white space and shrink any white space in the
middle down to single spaces. STRCOMPRESS and STRTRIM
can be combined to handle this: '

A = ' Yet another poorly spaced ' + §
'sentence.’
Create a string with undesirable white space.

PRINT, ’'>', STRCOMPRESS(STRTRIM(A, 2)), '<’
Eliminate unwanted white space.

Executing these statements gives the result:

>Yet another poorly spaced sentence.<
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Determining the Length of Strings

The STRLEN function obtains the length of a string. It has the
form:

result = STRLEN(string)
where string is the string for which the length is required.
For example, the following statement:

PRINT, STRLEN('This sentence has 31 ' +$
'characters’)

results in the output:
31

while the following PV=WAVE statement prints the lengths of all
the names contained in the array TREES:

PRINT, STRLEN(TREES)
The resulting output from running this statement is:

5585346
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Manipulating Substrings

PV-WAVE provides the STRPOS, STRPUT, and STRMID rou-
tines to locate, insert, and extract substrings from their string
arguments.

The STRPOS function is used to search for the first occurrence of
a substring. It has the form:

result = STRPOS(object, search_string[, pos])

where object is the string to be searched, search_string is the sub-
string to search for, and pos is the character position (starting with
position 0) at which the search is begun. The argument pos is
optional. If it is omitted, the search is started at the first character
(character position 0). The following statements count the number
of times that the word dog appears in the string dog cat duck
rabbit dog cat dog:

ANIMALS = ’‘dog cat duck rabbit dog cat dog’
The string to search — dog appears 3 times.

I =20
Start searching in character position 0

CNT = 0
Number of occurrences found

WHILE (I NE -1) DO BEGIN
I = STRPOS(ANIMALS, ’'dog’, I)
Search for an occurrence
IF (I NE -1) THEN BEGIN CNT = CNT + 1 & $
I =1+ 1 & END

If one is found, count it and advance to the next character
position.

ENDWHILE
PRINT, 'Found ', cnt, " occurrences of ‘dog

rn

Running the above statements produces the result:

Found 3 occurrences of ’‘dog’
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The STRPUT procedure inserts the contents of one string into
another. It has the form:

STRPUT, destination, source [, position]

where destination is the string to be inserted into, source is the
string to be inserted, and position is the first character position
within destination at which source will be inserted. The argument
position is an optional argument. If it is omitted, the insertion is
started at the first character (character position 0). The following
statements use STRPOS and STRPUT to replace every occurrence
of the word dog with the word CAT in the string dog cat duck
rabbit dog cat dog:

ANIMALS = ’'dog cat duck rabbit dog cat dog’
The string to modify — dog appears 3 times.

WHILE (((I = STRPOS(ANIMALS, ‘dog’))) NE -1)
DO STRPUT, ANIMALS, ‘CAT’, I
While any occurrence of dog exists, replace it.

PRINT, ANIMALS

Running the above statements produces the result:

CAT cat duck rabbit CAT cat CAT

The STRMID function extracts substrings from a larger string. It
has the form:

result = STRMID(expression, position, length)

where expression is the string from which the substring will be
extracted, position is the starting position within expression of the
substring (the first position is position 0), and length is the length
of the substring to extract. If there are not length characters follow-
ing position, then the substring will be truncated. The following
PV-WAVE statements use STRMID to print a table matching the
number of each month with its three-letter abbreviation:

MONTHS = ’'JANFEBMARAPRMAYJUNJULAUGSEP' +$§
"OCTNOVDEC’
String containing all the month names.
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FOR I = 1, 12 DO PRINT, I,’ ",
STRMID(MONTHS, (I - 1) * 3, 3)

Extract each name in turn. The equation (I-1)* 3 calculates
the position within MONTH for each abbreviation.

The result of executing these statements is:

1 JAN
2 FEB
3 MAR
4 APR
5 MAY
6 JUN
7 JUL
8 AUG
9 SEP
10 OCT
11 NOV
12 DEC

Using Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter
expect at least one argument, which is the string on which they act.

If the argument is not of string type, PV=WAVE converts it to
string type using the same default formatting rules that are used by
the PRINT, or STRING routines. The function then operates on
the converted result. Thus, the PV=WAVE statement:

PRINT, STRLEN(23)
returns the result:
8

because the argument 23 is first converted to the string
' 23 ' which happens to be a string of length eight.

If the argument is an array instead of a scalar, the function returns
an array result with the same structure as the argument. Each ele-
ment of the result corresponds to an element of the argument.
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For example, the following statements:

A = STRUPCASE(TREES)
Get an uppercase version of TREES.

INFO, A
Show that the result is also an array.

PRINT, TREES
Display the original.

PRINT, A
Display the result.

results in the output:
A STRING = Array(7)
Beech Birch Mahogany Maple Oak Pine Walnut
BEECH BIRCH MAHOGANY MAPLE OAK PINE WALNUT

For more details on how individual routines handle their argu-
ments, see the individual descriptions in the PV=WAVE Reference.
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Working with Data Files

PV-WAVE provides many alternatives for working with

data files. There are few restrictions imposed on data files by
PV=-WAVE, and there is no unique PV=WAVE format. This chap-
ter describes PV=WAVE input and output methods and routines,
and gives examples of programs that read and write data using
PV=-WAVE, C, and FORTRAN commands.

Simple Examples of Input and Output

PV=WAVE variables point to portions of memory that are set aside
during a session to store data. The first step in analyzing data is
usually to transfer it into PV=WAVE variables.

This section provides a “birds-eye view” of how PV=WAVE
1I/0 (Input/Output) works by providing some examples showing
how data is transferred in and out of PV=WAVE variables.

Example 1 — Input

The following example illustrates how easy it is to read a single
column of data points contained in the file datal.dat into a
variable f1ow. The data points can then be plotted. The file
datal.dat contains the data points:
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23.
34.
78.
46.
44.

LSS O B RN B )

Try entering the following commands to read and plot the data
points:

status = DC_READ FREE(’datal.dat’, flow)

DC_READ_FREE handles the opening and closing of the file. It
takes the values in the file “data1.dat” and places them into a
floating-point variable named flow. The variable flow is dimen-
sioned to match the number of points read from the file. The
returned value status can be checked to see if the process
completed successfully.

PLOT, flow
Display the variable flow in a PV=WAVE window.

With two commands, the data is transferred from the file into the
variable f1ow and displayed in a PV=-WAVE window.

An alternate set of PV=WAVE commands that achieves a similar
result is shown below.

flow = FLTARR(9)

Define a variable that holds a single column of data containing 9
data points. Even though there are only 5 data points in the file,
the array is made larger so that data points can be added later.

OPENR, 1, ’'datal.dat’
Open the file “datat.dat” for reading.
READF, 1, flow
Read the data from the file into the variable flow.
CLOSE, 1
Close the file.
PLOT, flow
Display the variable flow in a PV=WAVE window.
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Example 2 — Output

Here’s a simple example showing how you can transfer data from
a PV=WAVE variable to a file:

ylow = [77, 63, 42, 56]
Define ylow to be a vector of integers.

status = DC_WRITE_FREE('data2.dat’, ylow, $
/Column)

DC_WRITE_FREE handles the opening and closing of the file.
It takes the values in “ylow” and stores them in a file named
“data2.dat”. Because the Column keyword was supplied, each
value is written on a different line of the file. The returned value
status can be checked to see if the process completed success-
fully.

Or you can use the OPENW command to create a new file that
contains these same values:

OPENW, 2, ‘data3.dat’
Open the file “data3.dat” for writing.
PRINTF, 2, '77'
PRINTF, 2, '63’
PRINTF, 2, '42°'
PRINTF, 2, '56’
Write the values to the file, each value on a new line.
CLOSE, 2
Close the file.

Now use the following commands to change a data point in the
existing file data3.dat:

OPENU, 1, ’‘data3.dat’

Open the file “data3.dat” for updating.
PRINTF, 1, '89°

Replaces the value 77 with the new value 89.
CLOSE, 1

Close the file.
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Now the contents of data3.dat look like:

89
63
42
56

Conclusion

These two examples have introduced you to a few of the com-
mands that are available for reading and writing data. The rest of
this chapter elaborates on the various commands and concepts that
you need to know to confidently transfer data in and out of
PV-WAVE.

Opening and Closing Files

Opening Files

PV=-WAVE has several commands for opening and closing data
files; you select the command that matches the way you intend to
use the file.

Before a file can be processed by PV=WAVE, it must be opened
and associated with a number called the logical unit number, or
LUN for short. All I/O in PV=WAVE is done by specifying the
LUN, not the filename.

The LUN is supplied as part of the function call. For example, to
open the file named data.dat for reading on file unit 1, you
would enter the following command:

OPENR, 1, ’'data.dat’

Once the file is opened, you can choose between several 1/0 rou-
tines. Each routine fills a particular need — the one to use depends
on the particular situation. Refer to the examples in this chapter to
get an idea of how (and when) to open and close data files.
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If you are using one of the 1/0 routines that start with the letters
“DC”, you do not need to explicitly open and close the file,
because these steps happen automatically. For more details, refer
to Functions for Simplified Data Connection on page 153.

Basic Commands for Opening Files
The three main OPEN commands are listed in Table 8-1:

Table 8-1: Procedures that Open Files

Procedure Description

OPENR Opens an existing file for input only.

OPENW Opens a new file for input and output. Under UNIX, if
the named file already exists, the previous contents
are destroyed. Under VMS, a file with the same name
and a higher version number is created.

OPENU Opens an existing file for input and output.

The general form for using any of the OPEN procedures is:

OPENYX, unit, filename

where unit refers to the logical file unit that will be allocated for
opening the file named filename, and x is either an R, W, or U,
depending on which of the three OPEN commands you choose to
use.

The three commands shown above recognize keywords that
modify their normal behavior. Some keywords are generally
applicable, while others only have effect under a given operating
system. For more information about keywords, refer to the
descriptions for the OPENR, OPENW, and OPENU procedures.
These descriptions can be found in the PV=WAVE Reference.
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When to Open the File for I/O (Input/Output)

Closing Files

Usually you must open the file before any 1/0 can be performed.
But there are two situations where you don’t need to open the file
before doing any 1/0:

* Reserved LUNs — There are three file units that are always
open — in fact, the user is not allowed to close them. These
files are standard input (usually the keyboard), standard out-
put (usually the workstation’s screen), and standard error
output (usually the workstation’s screen). These three files are
associated with LUNs 0, -1, and -2 respectively. Because
these file units are always open, you do not need to open them
prior to using them for I/O. For more information about the
three reserved file units, refer to Reserved Logical Unit Num-
bers (-2, -1, 0) on page 141.

* Simplified I/O Routines — Any PV=WAVE 1/O function that
begins with the two letters “DC” automatically handles the
opening and closing of the file unit. This group of functions
has been provided to simplify the process of getting your data
in and out of PV=WAVE. For more information about the DC
1/0 functions, refer to Functions for Simplified Data Connec-
tion on page 153.

Always close the file when you are done using it. Closing a file
removes the association between the file and its LUN and thus
frees the LUN for use with a different file. There is usually an
operating-system-imposed limit on the number of files you may
have open at once. Although this number is large enough that it
rarely causes problems, you may occasionally need to close a file
before opening another file. In any event, it is a good idea to only
keep needed files open.

Closing a LUN is done with the CLOSE procedure. For example,
to close file unit 1, enter this command:

CLOSE, 1
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Also, remember that PV=WAVE closes all open files as it shuts
down. Any LUN you allocated is automatically deallocated when
you exit PV=WAVE with the EXIT or QUIT command.

If FREE_LUN is called with a file unit number that was previously
allocated by GET_LUN, it calls CLOSE before deallocating the
file unit.

Logical Unit Numbers (LUNs)

PV-WAVE logical unit numbers are in the range {-2...128}; they
are divided into three groups:

Reserved Logical Unit Numbers (-2, -1, 0)

0, -1, and -2 are special file units that are always open within
PV=-WAVE:

* 0 (zero) — The standard input stream, which is usually the
keyboard. This implies that the PV=WAVE statement:

READ, X
is equivalent to
READF, 0, X

The user would then enter the values of X from the keyboard,
as shown in the following statements:

READ, X
0.2, 0.4, 0.6

The line preceded with the colon (:) denotes user input.

* -1 (negative 1) — The standard output stream, which is usu-
ally the workstation’s screen. This implies that the PV=WAVE
statement:

PRINT, X

is equivalent to
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PRINTF, -1, X

The following PV=WAVE command can be used to send a
message to the screen:

PRINT, ‘Hello World.’
The following line:
Hello World.

is sent to the workstation’s screen by PV=-WAVE.

* -2 (negative 2) — The standard error stream, which is usually
the workstation’s screen.

Because the READ and PRINT procedures automatically use the
standard input and output streams (files) by default, basic ASCII
I/O is extremely simple.

Operating System Dependencies

The reserved files units have a special meaning which is operating-
system dependent, as explained in the following sections:

UNIX

The reserved LUNSs are equated to stdin, stdout, and
stderr respectively. This means that the normal UNIX file
redirection and pipe operations work with PV=WAVE. For exam-
ple, the shell command:

% wave < wave.inp > wave.out &

causes PV=WAVE to execute in the background, reading its input
from the file wave . inp and writing its output to the file wave. -
out.

VMS

The reserved LUNSs are equated to SYS$SINPUT, SYSSOUTPUT,
and SYS$SERROR respectively. This means that the DCL DEFINE
statement can be used to redefine where PV=WAVE gets com-
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mands and writes its output. It also means that PV=WAVE can be
used in command and batch files.

Logical Unit Numbers for General Use (1...99)

These are file units for normal interactive use. When using
PV=WAVE interactively, you can select any number in this range.

The following PV-WAVE statements show how a string, “Hello
World.”, could be sent to a file named hello.dat:

OPENW, 1, 'hello.dat’
Open LUN 1 for hello.dat with write access.

PRINTF, 1, 'Hello World.’
Insert the string “Hello World.” into the file hello.dat.

CLOSE, 1
You're done with the file, so close it.

Logical Unit Numbers Used by GET_LUN/FREE_LUN (100...128)

These are file units that are managed by the GET_LUN and
FREE_LUN procedures. GET_LUN and FREE_LUN provide a
standard mechanism for PV=WAVE routines to obtain a LUN.

GET_LUN allocates a file unit from a pool of free units in the
range {100...128}. This unit will not be allocated again until it is
released by a call to FREE_LUN. Meanwhile, it is available for
the exclusive use of the program that allocated it.

When writing PV=WAVE procedures and functions, be sure not to
explicitly assign file unit numbers in the range {100...128}. If a

PV-WAVE procedure or function reads or writes to an explicitly
assigned file unit, there is a chance it will conflict with other rou-
tines that are using the same unit. Always use the GET_LUN and
FREE_LUN procedures to manage LUNS.

Sample Usage — GE
T_LUN and FREE_LUN
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Not

A typical procedure that needs a file unit might be structured in the
following way:

PRO demo
OPENR, Unit, ’'file.dat’, /GET_LUN
Get a unique file unit and open the file.

Other commands go here.

FREE _LUN, Unit

Return the file unit number. Since the file is still open,
FREE_LUN will automatically call CLOSE.

END
End of the procedure.

All PV=-WAVE procedures and functions that open files, including
those that you write yourself, should use GET_LUN and FREE_-
LUN to obtain file units. Never use a file unit in the range
{100...128} unless it was previously allocated with GET_LUN.

How is the Data File Organized?

In ASCII files, the file can either be organized by rows or columns;
the fact that ASCII files are human-readable helps you interpret
their contents. In binary files, however, the organization of the file
may be considerably less clear; you need to know something about
the application that created the file, and understand the operating
system under which the application was running to fully under-
stand the organization of the file.

Column-Oriented ASCII Data Files

A column-oriented data file is one that contains multiple data val-
ues arranged in columns; because it is ASCII, the data is human-
readable. At the end of each row is a control character, such as
Ctrl-J or Ctrl-M, that forces a line feed and carriage return.
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In a column-oriented file, the values in each column are related in
some way; ultimately, you will probably want to group all the data
in each column into a different PV=WAVE variable for further
analysis. A typical column-oriented data file is shown in Figure
8-1.

Not all files that contain columns of values contain column-
oriented data. For example, if you are reading every value in the
file into the same variable, the file is probably a row-oriented file,
despite its apparent columnar organization. The organization of
row-oriented files is discussed further in Row-Oriented ASCII
Data Files on page 146.

Name: Hour
Type: Integer
Dimension 1: *

JAN 0 33.4110 0.5382 0.2683
#;gfgﬁggh JAN 2 33.7718 0.3849 0.2465
Dimension 1: * | JAN 4 34.2258 0.3116 0.2465

JAN 6 34.6347 1.4532 0.4215

JAN 8 38.8444 2.0452 0.7581

JAN 10 44.7400 0.7629 0.7511

JAN 12 47.4997 0.2935 0.6559

JAN 14 47.5487 0.8376 0.7142

JAN 16 44.5487 0.8376 0.7142

JAN 18 39.4317 1.5540 0.5852

JAN 20 36.9194 0.8124 0.4210

JAN 22 35.4489 0.6462 0.3712

FEB 0 30.4813 0.4902 1.2768

FEB 2 29.8589 1.3381 1.3021

FEB 4 29.9985 0.3262 125137

FEB 6 33.8292 1.6744

FEB 8 37.9902 0.494 Name: SO2

FEB 10 39.7021 Byper F!oatw

FEB 12 Name: CO imension 1:

FEB 14 Type: Float

FEB Dimension 1: *

Name: Fahrenheit
Type: Float

Dimension 1: *

Figure 8-1 Typical file organization for a column-oriented ASCII data
import file. In this example, the first column of data is associated with a
variable named Month, the second column with a variable named Hour,
the third column with a variable named Fahrenheit, the fourth column with
a variable named CO, and the fifth column with a variable named SO2.
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Row-Oriented ASCII Data Files

Name: Source// I
Type: String

Scalar

Name: Date

Type: Integer /

Scalar

Name: Bin
Type: Float

Name: Chute
Type: Integer
Dimensions: 22-by-1

Dimensions: 10-w-3/

A row-oriented data file is one that contains multiple data values
arranged in a continuous stream; because it is ASCII, the data is
human-readable. When reading this kind of file, the size of the
variables in the variable list determines how many values get
transferred. The data type of the variables also influences how the
data gets interpreted, because if the data is not the expected type,
PV-WAVE performs type conversion as it reads the data. A typical
row-oriented data file is shown in Figure 8-2.

0xZF OxFF 0x0C 0xD2 0x4E 0x31 0x3A 0xA8 0xE4 0x23
0x90 0x8B 0x€C 0x1D 0x18 0x38 0x8E 0x37 0x72 0xBB

0x45 0x91 0£4B 0x3E 0x59 0x77 Ux7E 0x97 0x22 Ox 1F OxFF
OXFF 0x45 OXxFD OxFA OxFB 0x]1 0x39 0x47 0x3B 0x9A
0x67 6%43 0x29 0xF1 0x56 0x22 0xFD 0xDA 0x11 0x59
0x51 OxF1 OxFA 0x88 0x67 0xDA 0x45 0x77 (.993, .921)

432, .887) (.734, .821) (.691, .459) (238, .457) (.891, .457)
(.589, .495) (.576, .832) (.601, .734) (.902, .729) (.934, .782)
(:554, .348) (776, .892) (.340, .915) (.817, .412)\(.667, .456)
(.992, .480) (.739, .308) (.812, . 345)
(:544, .923) (.845, .342) (.567, .

Name: Phase_Shift
Type: Complex
Dimensions: 8-by-4

Name: Mill
Type: Byte
Dimensions: 8-by-8

Figure 8-2 Typical file organization for a row-oriented ASCII data import
file. Spaces are being used as the delimiter to separate adjacent data
values. In this example, the first group of data is associated with a variable
named Source, the second group with a variable named Date, the third
group with a variable named Bin, the fourth group with a variable named
Chute, the fifth group with a variable named Mill, and the sixth group with
a variable named Phase_Shift.
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How Long is a Record?

It can be important to understand the concept of records, espe-
cially if you are performing certain types of 1/0. The following
sections discuss records, both in the context of formatted and
unformatted data. Differences between the UNIX and VMS oper-
ating systems are also noted, when they exist.

Record Length in ASCII (Formatted) Files

Note

In an ASCII text file, the end-of-line is signified by the presence of
either a Ctrl-J or a Ctrl-M character, and a record extends from one
end-of-line character to the next. However, there are actually two
kinds of records:

v physical records
v logical records

For column-oriented files, the amount of data in a physical record
is often sufficient to provide exactly one value for each variable in
the variable list, and then it is a logical record, as well. For row-
oriented files, the concept of logical records is not relevant, since
data is merely read as contiguous values separated by delimiters,
and the end-of-line is interpreted as yet another delimiter.

Changing the Logical Record Size

If you are using one of the DC_READ routines for simplified 1/O,
and you are reading column-oriented data, you can use a command
line keyword to explicitly define a different logical record size, if
you wish. The “DC” routines are introduced in Functions for Sim-
plified Data Connection on page 153.

By default, PV=WAVE considers the physical record to be one line
in the file, and the concept of a logical record is not needed. So in
most cases, you do not need to define a logical record. But if you
are using logical records, the physical records in the file must all
be the same length.

For more details about the keywords that control logical record
size, refer to the descriptions for the DC_READ_FIXED and
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DC_READ_FREE routines; these descriptions are found in a sep-
arate volume, PV=WAVE Reference.

Record Length in Binary (Unformatted) Files

Binary data is a continuous stream of ones and zeros. To fully
understand the organization of binary files, you need to know
something about the application that created the file, and under-
stand the operating system under which the application was
running. You would then choose variables for the variable list that
match that organization. The type and size of the variables in the
variable list establish a framework by which the ones and zeros in
the file are interpreted.

For binary files, neither the concept of physical or logical records
is relevant, although when using PV-WAVE in a VMS environ-
ment, the concept of records (at the operating system level) may
still affect your work. For an example showing why you must con-
sider record length when working in a VMS environment, refer to
Record-Oriented 1/O in VMS Binary Files on page 149.

For more information about how the operating system affects
the transfer of binary data, refer to Reading UNIX FORTRAN-
Generated Binary Data on page 199 and Reading VMS
FORTRAN-Generated Binary Data on page 202.

Number of Records in a File

In the VMS operating system, the number of records in a file is
always known because that information is included in the file
header description. For an example of how to view the header
description for a VMS file, refer to Creating Indexed Files on page
228.

In the UNIX operating system, files are not divided into records,
unless the application or individual that created it chose to orga-
nize it by records when creating the file.
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Record-Oriented I/O in VMS Binary Files

All VMS files are divided into records at the operating system
level. The basic rule of I/O with record-oriented binary files is that
the form of the input and output statements should match. For
instance, the statements:

WRITEU, unit, A
WRITEU, unit, B
WRITEU, unit, C

generate three output records, and should be later input with state-
ments of the form:

READU, unit, A
READU, unit, B
READU, unit, C

In contrast, the statement:
WRITEU, unit, A, B, C

generates a single output record, and should be later input with the
single statement:

READU, unit, A, B, C

In the examples shown above, it is assumed that the type and size
of variables A, B, and C is the same during both the writing and the
reading of the data. Otherwise, the data is interpreted differently
by the READU commands than it was interpreted previously by
the WRITEU commands.

Note

For more information about VMS files, refer to VMS-Specific
Information on page 224; that section contains more information
on how VMS handles files.
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Example — Transferring Record-Oriented Data

When writing to VMS files, PV=WAVE always transfers at least a
single record of data. If the amount of data required exceeds a sin-
gle record, more I/0 occurs. For example, consider the case of a
file with 80 character records. This file would have been opened
with the following statement:

OPENW, unit, "filename", 80
The statement:

WRITEU, unit, FINDGEN(512)

causes 2048 bytes to be output (each floating point value takes 4
bytes), and thus causes 26 records to be output (2048/80 = 25.6).
The last record is not entirely full, and is padded at the end with

ZEroes.

On later input, the same rule is applied in reverse — 26 records are
read, and the unused portion of the last one is discarded.

This example does not apply to the UNIX operating system, since
UNIX files are not record-oriented.
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Types of Input and Output

PV=-WAVE divides 1/O into two categories. These are
summarized, along with a brief discussion of advantages and
disadvantages, in Table 8-2 below.

Table 8-2: A Comparison of Binary and
Human-Readable Input/Output (I/O)

Advantages

Disadvantages

Binary I/O

Binary I/O is the sim-
plest and most effi-
cient form of 1/O.

Binary data is more
compact than ASCII
data.

Binary data is not
always portable. Binary
data files can only be
moved easily to and
from computers that
share the same internal
data representation.

Binary data is not
directly human read-
able, so you can'’t type
it to a workstation’s
screen or edit it with a
text editor.

ASCIl (Human-
Readable) 1/0

ASClII data is very
portable. It is easy to
move ASCII data files
to various comput-
ers, even computers
running different
operating systems, as
long as they all use
the ASCII character
set.

ASCII data can be
edited with a text
editor or typed to
the workstation’s
screen because it
uses a human read-
able format.

ASCII /O is slower than
binary 1/0 because of
the need to convert
between the internal
binary representation
and the equivalent
ASCII characters.

ASCII data requires
more space than binary
data to store the same
information.
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Each Type of I/O has Pros and Cons

The type of I/O you use will be determined by considering the
advantages and disadvantages of each method. Also, when trans-
ferring data to or from other programs or systems, the type of /0
is determined by the application. The following suggestions are
intended to give a rough idea of the issues involved, although there
are always exceptions:

Data that needs to be human readable should be written using
a human-readable character set. The two main character sets
in use are ASCII and EBCDIC; the PV=WAVE documentation
assumes that you are using ASCII. The PV=WAVE routines
for human-readable 1/O are listed in Table 8-4 on page 156 and
Table 8-5 on page 157.

Images and large data sets are usually stored and manipulated
using binary 1/O in order to minimize processing overhead.
The ASSOC function is often the natural way to access such
data, and thus is an important PV=WAVE function to under-
stand. The ASSOC function is discussed in Associated
Variable Input and Output on page 212.

Images stored in the TIFF format can be easily transferred
using the DC_READ_TIFF and DC_WRITE_TIFF functions.
Other images, either 8-bit or 24-bit, are transferred with the
DC_READ_*_BIT and DC_WRITE_*_BIT functions, where
the * represents either an 8 or a 24, depending on the type of
image data that you have. The various DC routines that can be
used to transfer image data are discussed in /nput and OQutput
of Image Data on page 189.

Data that needs to be portable should be written using the
ASCII character set. Another option is to use XDR (eXternal
Data Representation) binary files by specifying the Xdr key-
word with the OPEN procedures. This is especially important
if you intend to exchange data between computers with mark-
edly different internal binary data formats. XDR is discussed
in External Data Representation (XDR) Files on page 205.

For ASCII files, freely formatted 1/O is easier to use than
explicitly formatted 1/O, and is almost as easy as binary I/O,
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so it is often a good choice for small files where there is no
strong reason to prefer one method over another. Free format
1/0 is discussed in Free Format Input and Output on page 159.

* The easiest routines to use for the transfer of both images and
formatted ASCII data are the DC_READ and DC_WRITE
routines. They are easy to use because they automatically han-
dle many aspects of data transfer, such as opening and closing
the data file. The “DC” routines are introduced in the next sec-
tion, Functions for Simplified Data Connection.

Functions for Simplified Data Connection

Note |

PV=WAVE includes a group of I/O functions that begin

with the two letters “DC”; this group of functions has been pro-
vided to simplify the process of getting your data in and out of
PV=WAVE. This group of I/O functions does not replace the
READ, WRITE, and PRINT commands, but does provide an easy-
to-understand alternative for most I/O situations.

The DC_* routines that import and export ASCII data do not sup-
port the transfer of data into or from structures. An exception to
this is the 'DT, or date/time, structure. It is possible to transfer
date/time data using DC_* routines.

The functions DC_READ_FREE and DC_READ_FIXED are
well-suited for reading column-oriented data; there is no need to
use the looping construct necessitated by other PV=WAVE proce-
dures used for reading formatted data. The functions
DC_WRITE_FREE and DC_WRITE_FIXED are equally well-
suited for writing column-oriented ASCII data files. To see a fig-
ure showing a sample column-oriented file, refer to Figure 8-1 on
page 145.

The DC functions are easy to use because they automatically
handle many aspects of data transfer, such as opening and closing
the data file. Another advantage of the DC I/O commands is that
they recognize C-style format strings, even though all other
PV=WAVE /0 routines recognize only FORTRAN:-style format
strings.
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By default, DC_WRITE_FREE generates CSV (Comma Sepa-
rated Value) ASCII data files, and the corresponding function,
DC_READ_FREE, easily reads CSV files.

For specific information about any of the DC routines, refer to
examples later in this chapter, or refer to individual function
descriptions in the PV=WAVE Reference. For information on the
two routines used to perform DC routine error checking, refer to
Table 8-6 on page 158.

Binary I/O Routines

Binary I/O transfers the internal binary representation of the data
directly between memory and the file without any data conversion.
Use it for transferring images or large data sets that require higher
efficiency. The routines for binary I/O are shown in Table 8-3:

Table 8-3: Routines for Transferring
Binary Data

Function Description

READU Read binary data from the specified file
unit.

WRITEU Write binary data to the specified file unit.

DC_WRITE_8 _BIT
DC_READ_8_BIT

Write (or read) binary 8-bit data to
(or from) a file without having to explicitly
choose a LUN.

DC_WRITE_24 BIT
DC_READ_24_BIT

Write (or read) binary 24-bit data to
(or from) a file without having to explicitly
choose a LUN.

DC_WRITE_TIFF

Write (or read) TIFF image data. You do

DC_READ_TIFF not have to explicitly choose a LUN.

ASSOC Map an array structure to a data file,
providing efficient and convenient direct
access to binary data.

GET_KBRD Read single characters from the key-

board.
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For more information about the routines shown in Table 8-3, refer
to Input and Output of Binary Data on page 188, Associated Vari-
able Input and Output on page 212, and Getting Input from the
Keyboard on page 222.

ASCII I/O Routines

ASCII data is useful for storing data that needs to be human read-
able or easily portable. ASCII I/O works in the following manner:

e Input — ASCII characters are read from the input file and
converted to an internal form.

*  Output — The internal binary representation of the data is
converted to ASCII characters that are then written to the
output file.

PV=WAVE provides a number of routines for transferring ASCII
data; these routines are listed in Table 8-4 on page 156 and Table
8-5 on page 157.

Choosing Between Free or Fixed (Explicitly Formatted) ASCII I/O

ASCII I/O is subdivided further into two categories; the two cate-
gories are compared below.

Fixed Format 1/0

You provide an explicit format string to control the exact format
for the input or output of the data. For a column-oriented data file,
with data going into more than one PV=WAVE variables, this
implies that the values in the input or output file line up in well-
defined, fixed-width columns, as shown earlier in Figure 8-1 on
page 145.

Because the data values end up being restricted to certain locations
on the line, this style of 1/O is called fixed format I/0. The exact
format of the character data is specified to the I/O procedure using
a format string (via the Format keyword). If no format string is
given, default formats for each type of data are applied.
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Free Format I/O

PV=WAVE uses default rules to format the data and uses delimit-
ers to differentiate between different data values in the file. During
input, the values in the file do not have to line up with one another
because PV=WAVE is not imposing a rigid structure (format) on
the file.

You do not have to decide how the data should be formatted
because, in the case of input, PV=WAVE automatically looks for
delimiters separating data values, and in the case of output, auto-
matically places delimiters between adjacent data values. Because
the values are “free” to be anywhere on the line, as long as they are
clearly separated by delimiters, this style of 1/O is called free for-
mat I/0.

ASCII I/O — Free Format

The routines for freely formatted ASCII I/O are shown in
Table 8-4:

Table 8-4: Routines for Transferring
Freely Formatted ASCII Data

Procedure Description

PRINT Write ASCII data to the standard output file
(LUN —1).

READ Read ASCII data from the standard input file
(LUN 0).

PRINTF Write (or read) ASCII data to (or from) the

READF specified LUN.

DC_WRITE_FREE | Write (or read) ASCII data to (or from)

DC_READ_FREE a file without having to explicitly choose a
LUN.

For all the routines listed in Table 8-4, you do not have to provide
a format string to transfer the data. (Because the values in the file
are all separated with delimiters, no format string is needed.) The
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free format I/O routines are discussed in more detail in Free For-
mat Input and Output on page 159.

ASCIlI I/O — Fixed Format

The routines for explicitly formatted ASCII 1/O are shown in
Table 8-5:

Table 8-5: Routines for Transferring
Explicitly Formatted ASCII Data

Procedure Description

PRINT Write ASCII data to the standard output file
(LUN -1).

READ Read ASCII data from the standard input file
(LUN 0).

PRINTF Write (or read) ASCII data to (or from) the

READF specified LUN.

DC_WRITE_FIXED | Write (or read) ASCII data to (or from) a file

DC_READ_FIXED without having to explicitly choose a LUN.

For all the routines shown in Table 8-5, you use the Format key-
word to provide the format string that is used to transfer the data.
The first routines listed (PRINT, READ, PRINTF, READF) recog-
nize FORTRAN-like formats; the DC routines accept either C or
FORTRAN format strings. The explicit format I/O routines are
discussed in more detail in Explicitly Formatted Input and Output
on page 165.

The STRING function can also generate ASCII output that is sent
to a string variable instead of a file. For more information about
the STRING function, refer to a later section, Using the STRING
Function to Format Data on page 187.
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Other I/O Related Routines

In addition to performing I/O to an open file, there are several
PV=WAVE routines that provide other file management capabili-
ties. These additional routines are shown in Table 8-6:

Table 8-6: Other I/O Related Commands

Procedure Description

GET_LUN Allocate and free LUNSs.

FREE_LUN

FINDFILE Locate files that match a file specification.

FLUSH Ensure all buffered data for a LUN has actu-
ally been written to the file.

POINT_L Position the file pointer.

UN

EOF Check for the end-of file condition.

INFO, /Files Print information about open files.

FSTAT Get detailed information about any LUN.

DC_ERROR_MSG | Returns the text string associated with the
negative status code generated by a “DC”
data import/export function that does not
complete successfully.

DC_OPTIONS Sets the error message reporting level for
all “DC” import/export functions.

For additional information about DC_ERROR_MSG and
DC_OPTIONS, refer to their descriptions in the PV=WAVE Refer-
ence. For more information about the rest of the routines shown in
Table 8-6, refer to a later section, Miscellaneous File Management
Tasks on page 218.
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Free Format Input and Output

PV-WAVE free format ASCII I/O is extremely easy to use. The
main advantage of free formatted ASCII I/O is that you do not
have to provide a format string to format the data, because you
assume that adjacent values are separated by delimiters.

The routines for performing freely formatted ASCII 1/O are listed
in Table 8-4 on page 156.

Free Format Input

Input is performed on scalar variables. In other words, array and
structure variables are treated as collections of scalar variables.
For example:

Z_hi = INTARR(5)
READ, Z_hi

causes PV=WAVE to read (from the standard input stream) five
separate values to fill each element of the variable Z_hi.

Input data must be separated by commas or white space (tabs and
blank spaces).

If the current input line is empty and there are variables left to be
filled, another line is read. If the current input line is not empty but
there are no variables left to be filled, the remainder of the line is
ignored.

When reading into a variable with data type String, all characters
remaining in the current input line are placed into the string.

When reading into numeric variables, PV=WAVE attempts to con-
vert the input into a value of the expected type. Decimal points are
optional and exponential (scientific) notation is allowed. If a float-
ing-point value is provided for an integer variable, the value is
truncated.
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Importing String Data

When PV=-WAVE reads strings using free formats, it reads to the
end of the line. For this reason, it is usually convenient to place
string variables at the end of the list of variables to be input. For
example, if S is a string variable and I is an integer, do not do this:

READ, S, I
Read into the string first.

hello world 34

PV=WAVE prompts for input. The user enters a string value fol-
lowed by an integer.

34
Because this is a freely formatted read statement, and the READ
procedure does not recognize delimiters inside strings, the
entire previous line was placed into the string variable S, and
PV=WAVE still expects a value to be entered for I. Consequently,
PV=WAVE prompts for another line.

PRINT, S
Show the result of S.

results in the output:

'ello world 34’

Importing Data into Complex Variables

Complex scalar values are treated as two floating-point values.
When reading into a variable of complex type, the real and imag-
inary parts must be separated by a comma and surrounded by
parentheses. If only a single value is provided, it is taken as the real
part of the variable, and the imaginary part is set to zero.

Here are some examples of how to enter complex data from the
keyboard:

Z lo = COMPLEX(0)
Create a complex variable.

READ, Z_lo
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: (3,4)
PV=WAVE prompts for input: Z_lo is set to COMPLEX(3,4).

READ, Z_lo
: 50
PV=WAVE prompts for input: Z_lo is set to COMPLEX(50,0).

Importing Data into a Structure

The following PV=WAVE statements demonstrate how to load
data into a complicated structure variable and then print the

results:

A = {alltypes, a:0b, b:0, c:0L, d:1.0, e:1D, S
f:complex(0), g:'string’, e:fltarr(5)}
Create a structure named “alitypes” that contains all seven
of the basic PV=WAVE data types, as well as a floating-
point array.

READ, A

: 12345 (6,7) eight
Read freely formatted ASCII data from the standard input;
PV=WAVE prompts for input. Enter values for the first six
numeric fields of A, and the string. Notice that the complex value
was specified as (6,7). If the parentheses had been omitted, the
complex field of A would have received the value COM-
PLEX(6,0), and the 7 would have been used for the next field.
When reading into a string variable with the READ procedure,
and no format string has been provided, PV=WAVE starts from
the current point in the input and continues to the end of the line.
Thus, the values intended for the rest of the structure are
entered on a separate line, as shown in the next step.

¢ 9 10 11 12 13
There are still fields of A that have not received data, so
PV=WAVE prompts for another line of input.

PRINT, A
Show the result.
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Executing these statements results in the following output:
{1 2 3 4.00000 5.0000000
(6.00000, 7.00000) eight
9.00000 10.0000 11.0000 12.0000 13.0000 }

When producing the output, PV=WAVE uses default formats for
formatting the values, and attempts to place as many items as pos-
sible onto each line. Because the variable A is a structure, curly
braces, “{” and “}”, are placed around the output. The default for-
mats are shown in Table 8-7 on page 164.

Importing Date/Time Data

The following PV=-WAVE statements show how to read a file that
contains some data values and also some chronological informa-
tion about when those data values were recorded. The name of the
file is events.dat:

01/01/92 05:45:12 10
02/01/92 10:10:10 15.89
05/15/92 02:02:02 14.2

This example shows how to use the DC_READ_FREE function to
read this data. When using DC_READ_FREE, the date data and
the time data can be placed into the same date/time structure using
predefined templates. To see a complete list of the date/time tem-
plates, refer to Table 8-8 on page 169.

To read the date/time from the first two columns into date/time
variables and then read the third column of floating point data into
another variable, use the following PV-WAVE statements:

datel = REPLICATE({!DT},3)
The system structure definition of date/time is IDT. Date/time
variables must be defined as !DT arrays before being used if the
date/time data is to be read as such.

status = DC_READ_FREE("events.dat", $
datel, datel, floatl, /Column, $
Dt_Template=[1,-1])
The variables date1 is used twice, once to read the date data
and once to read the time data.
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To see the values of the variables, you can use the PRINT com-
mand:

FOR I = 0,2 DO BEGIN
PRINT, datel(I), floatl(I)
Print one row at a time.

ENDFOR

Exccuting these statements results in the following output:
{ 1992 01 01 05 45 12.00 } 10.0000
{ 1992 02 01 10 10 10.00 } 15.8900
{ 1992 05 15 02 02 02.00 } 14.2000

Because datel is a structure, curly braces, *{" and *}", are
placed around the output. When displaying the values of datel
and float 1, PV=WAVE uscs default formats for formatting the
values, and attempts to place as many items as possible onto cach
line.

For more information about the internal organization of the !DT
system structure, refer to Chapter 7, Working with Date/Time
Data, in the PV=WAVE User's Guide. For more information about
using the DC_READ_FREE function with date/time data, refer to
its description in the PV=WAVE Reference.
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Free Format Output

The format used to output numeric data is determined by the data
type. The formats used are summarized in Table 8-7:

Table 8-7: Output Formats Used
when Writing Data

Output Formats Used
Data Type by PRINT, PRINTF,
and DC_WRITE_FREE
Byte 14
Integer 18

Long Integer 12

Float G13.6

Double G16.8

Complex '(,G13.6,',, G13.6, "'
String A (character data)

When writing string data, each string (or element of a string array)
is written to the file, flanked with a delimiter on each side. This
implies that the strings should not contain delimiter characters if
you intend use free format input at a later time to read the file.

The current output line is filled with characters until one of the fol-
lowing happens (in the following order):

(a) There is no more data to output.

(b) The output line is full. The line width is controlled by
the device characteristics, as determined by the terminal
characteristics (tty), or the file’s record characteristics
(disk file).

(c) An entire row is output in the case of multidimensional
arrays.

When writing the contents of a structure variable to a file, its con-
tents are bracketed with curly braces, “{” and “}”.
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Explicitly Formatted Input and Output

Explicit formatting allows a great deal of flexibility in specifying
exactly how ASCII data is formatted. Formats are specified using
a syntax that is very similar to that used in FORTRAN or C format
statements. Scientists and engineers already familiar with FOR-
TRAN or C will find PV=-WAVE formats easy to write.

The routines for performing explicitly (fixed) formatted ASCII
1/0 are listed in Table 8-5 on page 157.

All data is handled in terms of basic PV=WAVE data types. Thus,
an array is considered to be a collection of scalar data elements,
and a structure is processed in terms of its basic components.
Complex scalar values are treated as two floating-point values.

Using FORTRAN or C Formats for Data Transfer

All PV=WAVE formatted ASCII I/O routines recognize
FORTRAN-style format strings, and for formatted I/O routines
that begin with the prefix “DC", C-style format strings can be
used, as well. The format string specifies the format in which data
is to be transferred as well as the data conversion required to
achieve that format.

FORTRAN and C data transfer codes are discussed in more detail
in Appendix A, FORTRAN and C Format Strings. You can also
find examples of using format codes with any of the descriptions
of the commands for transferring explicitly formatted data; these
descriptions are in the PV=WAVE Reference.

How is the Format String Interpreted?

The variable nzmes provided in a call to a PV=WAVE /O routine
comprise the variable list. The variable list specifies the data to be
moved between memory and the file. The Format keyword can be
included in the parameter list of an ASCII 1/O routine to provide a
format string that explicitly specifies the appearance of the trans-
ferred data.
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Caution >

The format string is traversed from left to right, processing each
record terminator and format code until an error occurs, or until no
variables are left in the variable list. In FORTRAN:-style formats,
the comma field separator serves no purpose except to delimit the
format codes.

When reading or writing data from the file, the data is formatted
according to the format string. If the data type of the input data
does not agree with the data type of the variable that is to receive
the result, PV=WAVE performs type conversion if possible, and
otherwise, issues a type conversion error and stops.

If the last closing parenthesis of the format string is reached and
there are no variables left in the variable list, then format process-
ing terminates. If, however, there are still variables to be processed
in the variable list, then part or all of the format specification is
reused. This process is called format reversion, and is discussed
more in Format Reversion on page 167.

In a FORTRAN-style format string, when a slash (/) or newline
() record terminator is encountered, the current record is com-
pleted and a new one is started. For output, this means that a new
line is started. For input, it means that the rest of the current input
record is ignored, and the next input record is read.

When a format code that does not transfer data is encountered, it
is processed according to its meaning. When a format code that
transfers data is encountered, it is matched up with the next entry
in the variable list. All recognized format codes are listed in
Appendix A, FORTRAN and C Format Strings.

It is an error to specify a variable list with a format string that
doesn’t contain a format code that transfers data to or from the
variable list. Because the command expects to transfer data to the
variables in the variable list, an infinite loop would result. For
example, consider the following statement:

PRINTF, 1, names, years, salary, Format= §
‘("Name", 28X, "Year", 4X, "Total Salary")’

This statement results in a message stating that an infinite loop is
detected (because no data is being transferred to the named vari-
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ables), and thus execution is being halted. On the other hand, the
following statement is acceptable because there are no variables
included as part of the parameter list:

PRINTF, 1, Format= $
" ("Name", 28X, "Year", 4X, "Total Salary")'’

Should | Use a FORTRAN or C Format?

The only PV=WAVE functions that recognize the C format strings
are those that begin with the prefix “DC”. The DC functions are
the ones that have been designed specifically to simplify the pro-
cess of transferring data.

All other procedures and functions that transfer data recognize
only the FORTRAN-style format statements. The FORTRAN
format codes that are recognized by PV=WAVE are listed in
Appendix A, FORTRAN and C Format Strings.

Format Reversion

Format reversion is a way to transfer a lot of data with a format
string that, at first glance, seems to be “too short”. When using
format reversion, the current record is terminated, a new onc is
started, and format control reverts to the first group repeat specifi-
cation that does not have an explicit repeat factor.

If you are using a C-style format string, the entire format string is
reused.

If the format does not contain a group repeat specification, format
control returns to the initial opening parenthesis of the format
string. For example, the PV=WAVE command:

PRINT, Format = $
"("The values are: ", 2("<", I1, ">"))’, §$
INDGEN (6)

results in the output:

Explicitly Formatted Input and Output 167



The values are: <0><1>
<2><3>
<4><5>

The process involved in generating this output is:

1) Output the string, “The values are:”.

2) Process the group specification and output the first two
values. The end of the format specification is encountered,
so end the output record. Data remains, so revert to the
group specification

2(Yl<"’ Il, ll>ll)
using format reversion.

3) Repeat the second step until no data remains, and then
for output, end the output record, or for input, stop reading
data values.

At this point, format processing is complete. To see other exam-
ples of format reversion, refer to Appendix A, FORTRAN and C
Format Strings.

Transferring Date/Time Data

PV=WAVE supports the transfer of date/time data in and out of
data files. Some examples of date/time data which you may wish
to read into PV=WAVE are:

10/20/92 12:00:10.90
21/01/93 11:06:29.0875
10-JAN-1992 12:46
MAR:1993 $25440.0

Although there are several ways to read data/time data, you would
want to choose the method that makes the most sense for your
application and best matches the style of program you are writing:

Use classical programming constructs — With this method,
you open the file, loop to read the data, close the file, and run
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the data through one of the date/time conversion routines. This
method is shown below in Method 1 — Read the File with
READF on page 170.

» Useone of the DC_READ routines — With this method, you
define one or more variables that use the date/time system
structure organization, and then use DC_READ_FIXED or
DC_READ_FREE to transfer the data into those variables
using date/time templates. This method is shown in Method 2
— Read the File with DC_READ_FIXED on page 173.

Method 2 utilizes the DC_READ routines. As discussed in Func-
tions for Simplified Data Connection on page 153, the DC routines
have been provided as yet another alternative for the process of
transferring data in and out of PV=WAVE.

Date/Time Templates

The templates that can be used with the formatted ASCII 1/O rou-
tines are shown in Table 8-8.

Table 8-8: Templates for Transferring
Date/Time Data

Number Template Description

1 MM*DD*YY[YY]
| DD*MM*YY[YY]
© ddd*YY[YY]

DD*mmm[mmmmmm]*YY[YY]
; [YYIYY*MM*DD
-1 ;. HH*MnMn*SS[.SSSS]

1

; -2 - HHMnMn
; M = Month, D = Day, Y = Year, H = Hour, Mn = Minute, S = Second
| The asterisk (*) shown above represents a delimiter that separates
- the different fields of data. The delimiter can also be a slash (/), a
: colon (:), a hyphen (-), or a comma (,).

j 2
N
5
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Positive template numbers are for transferring date data, while
negative template numbers are for transferring time data. To see

examples of the types of data that can be transferred using each of

these templates, refer to Table 7-2 on page 230 and Table 7-3 on
page 231 in the PV=WAVE User’s Guide.

Example — Reading Date/Time Data into PV-WAVE

Assume that you have a file, chrono.dat, that contains some
data values, including a three-character label showing where the

data was recorded, and also some chronological information about

when those data values were recorded:

LAM 10/02/90 09:32:00 10.00 32767
COS 10/02/90 09:36:00 15.89 99999
SNV 10/02/90 09:37:00 14.22 87654

Method 1 — Read the File with READF

To read the label from the first column into a string variable, the
date and time from the second and third columns into one date/
time variable and read the fourth and fifth columns of data into

another two variables, use the following PV=WAVE commands:

loc = STRARR(3) & calib = LONARR(3)
datel = STRARR(3) & timel = STRARR(3)
decibels = FLTARR(3)

Create variables to hold the location, calibration, date, time, and

decibel level.

OPENR, 1, ’'chrono.dat’
Open data file for input.

locs = ' ' & datels = locs & timels = datels
Define scalar strings.

calibs = 1L
Define a long integer scalar.
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I =20
Initialize counter.

WHILE (NOT EOF(1)) DO BEGIN
Loop over each record of data.
READF, 1, locs, datels, §$
timels, decibelss, calibs, Format = $
"(A3, 2(1X, A8), 1X, F5.2, 1X, I5)"
Read scalars; the first three are string variables, the
fourth is a float, and the fifth one is an integer.
loc(I) = locs & datel(I) = datels & $
timel(I) = timels & calib(I) = calibs $
& decibels(I) = decibelss
Store in each vector.
IF I LE 2 THEN I = I+1 ELSE CLOSE, 1 & $
STOP, "Too many records."
Increment counter and check for too many records.

ENDWHILE
CLOSE, 1
Close the file.

my dt_arr = STR_TO_DT(datel, timel, §$
Date_ Fmt=1, Time_Fmt = —1)
Use one of the conversion utilities, STR_TO_DT, to convert
the strings to date/time data. The variable date1 uses Tem-
plate 1, while the variable time1 uses Template -1. The
result array, my_dt_arr, holds both the MM/DD/YY and the
HH:MM:SS data.

Another alternative is to read the time and date data as integers
instead of strings. This is the approach you must take if your time/
date data does not have the customary delimiters separating the
months, days, and years, or the hours, minutes, and seconds, as
shown in the sample file below:

LAM 100290 093200 10.00 32767
COS 100290 093600 15.89 99999
SNV 100290 093700 14.22 87654
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In this situation, instead of defining datel and time1l to be
strings, you would define different variables — one for each
component of the date/time data:

INTARR(3) & mon year & day
hour INTARR(3) & min hour & sec = hour

Define integer arrays to hold the months, days, years, hours,
minutes, and seconds data.

year year

0 & days 0
hours 0 & mins 0 & secs 0
Define integer scalars for use inside the read loop.

years = 0 & mons

loc = STRARR(3) & calib = LONARR(3)
decibels = FLTARR(3)

Create variables to hold the location, calibration, and decibel
level.

locs = ' ' & calibs = 1L
Initialize string and long integer scalars.

OPENR, 1, ’'chrono.dat’
Open data file for input.

I=0
Initialize counter.

WHILE NOT EOF(1l) DO BEGIN
Beginning of read loop.

READF, 1, locs, mons, days, years, $

hours, mins, secs, §$

decibelss, calibs, Format = §

"(A3, 2(1X, 3(12)), 1X, F5.2, 1X, I5)"
Read scalars; the first one is a string variable, the next six
are integer variables, the eighth is a float, and the ninth
one is an integer.

year(I) = years & mon(I)= mons

day(I) = days & hour(I) = hours

min(I) = mins & sec(I) = secs
Store in each vector.
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IF I LE 2 THEN I = I+1 ELSE CLOSE, 1 & §
STOP, "Too many records."”
Increment counter and check for too many records.

ENDWHILE
CLOSE, 1

Now that the date/time data has been read into PV=WAVE vari-
ables, these variables can be used as input to the conversion utility,
VAR_TO_DT:

my dt_arr = VAR_TO_DT(year, mon, day, hour, $
min, sec)
Use one of the conversion utilities, VAR_TO_DT, to convert the
variables to PV=WAVE's date/time format.

Regardless of whether you read the data as strings and use the
STR_TO_DT function for conversion, or read the data as integer
values and use the VAR_TO_DT function for conversion, the
value of the my dt_arr array is the same. You can easily view
the contents of my_dt_arr using the PRINT command:

PRINT, my_dt_arr

{ 1990 10 2 9 32 0.00000 86946.397 0 }
{ 1990 10 2 9 36 0.00000 86946.400 0 }
{ 1990 10 2 9 37 0.00000 86946.401 0 }

Because the variable my_dt_arr is a structure, curly braces,
“{” and “}”, are placed around the output. For more information
about the internal organization of date/time structures, refer to
Chapter 7, Working with Date/Time Data, in the PV=WAVE User's
Guide.

Method 2 — Read the File with DC_READ_FIXED

The following PV=WAVE statements present another method for
reading date/time data into PV=WAVE variables (the same data
that was used for Method 1). Because this method utilizes the
DC_READ_FIXED function, it is able to use a C-style format
string to read the data. The data file is repeated below for your
convenience:
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LAM 10/02/90 09:32:00 10.00 32767
COS 10/02/90 09:36:00 15.89 99999
SNV 10/02/90 09:37:00 14.22 87654

This method automatically handles the string to date and string to
time conversion, although it does require that the date/time vari-
able, date1l, be predefined as a date/time system structure:

datel = REPLICATE({!DT},3)

The system structure definition of date/time is |DT. Date/time
variables must be defined as IDT structure arrays before being
used if the date/time data is to be read as such.

loc = STRARR(3) & calib = LONARR(3)
decibels = FLTARR(3)
Explicitly define the string, integer, and floating-point vectors.

status = DC_READ_FIXED("chrono.dat", $

loc, datel, datel, decibels, calib, $

/Col, Format="%s %8s %8s %f %d", S

Dt_Template=[1,-1])
DC_READ_FIXED handles the opening and closing of the
file. It transfers the values in “chrono.dat” to the variables
in the variable list, working from left to right. The variable
date1 appears in the variable list twice, once to read the
date data and once to read the time data.

Notice how in this method, the variable date1 is specified twice.
Because datel is defined as a date/time structure, it has pre-
defined tags for the various classes of chronological information.
By including datel in the variable list twice, both the date data
and the time data is combined in the same !DT structure, using two
different date/time templates (1 for date values and —1 for time
values).

For more information about the internal organization of the |DT
system structure, refer to Chapter 7, Working with Date/Time
Data, in the PV=-WAVE User’s Guide.
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Reading, Sorting, and Printing Tables of Formatted Data

PV-WAVE explicitly formatted 1/O has the power and flexibility
to handle almost any kind of formatted data. A common use of
explicitly formatted I/O is to read and write tables of data.

Example — Reading Data From a Word-Processing Application

Frequently, data files are produced by a word-processing or
spreadsheet application program. This example shows how to
import this kind of data into PV=WAVE variables.

Method 1 — Read the File with READF

Consider a data file containing employee data records. Each
employee has a name (String — 16 columns) and the number of
years they have been employed (Integer — 3 columns) on the first
line. The next two lines contain their monthly salary for the last
twelve months. A sample file named bullwinkle .wp with this

format might look like:

Bullwinkle 10

1000.0 9000.97 1100.0 2000.0
5000.0 3000.0 1000.12 3500.0 6000.0 900.0
Boris 11

400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25
Natasha 10

950.0 1050.0 1350.0 410.0 797.0 200.36
2600.0 2000.0 1500.0 2000.0 1000.0 400.0
Rocky 11

1000.0 9000.0 1100.0 0.0 0.0 2000.37
5000.0 3000.0 1000.01 3500.0 6000.0 900.12
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The following PV=WAVE statements read data with the above for-
mat and produce a summary of its contents:

OPENR, 1, ‘bullwinkle.wp’
Open data file for input.

name = '’ & years = 0 & salary = FLTARR(12)

Create variables to hold the name, number of years, and
monthly salaries. The type of each variable is automatically
determined by the type of initial value it is given.

PRINT, ’'Name Years Yearly Salary’
Output a heading for the summary.

PRINT, e oo oo oo oo oo ’
Output a ruling line for the heading.

WHILE (NOT EOF(1)) DO BEGIN
Loop over each employee.
READF, 1, name, years, salary, $
Format = "(Al6, I3, 2(/, 6F10.2))"
Read the data on the next employee.
PRINT, Format = "(Al6, I5, 5X, F10.2)",$
name, years, TOTAL(salary)

Output the employee information. Use the TOTAL
function to compute the yearly salaries from the monthly
salaries.

ENDWHILE
CLOSE, 1

The output from executing the statements shown above is:

Name Years Yearly Salary
Bullwinkle 10 32501.09
Boris 11 6805.35
Natasha 10 14257.36
Rocky 11 32500.50

Note V DC_READ_FIXED is not used in this method because the file, as
it is shown on page 175, is neither a column-organized file or a
row-organized file; it falls somewhere in between. In other words,
the name and years-of-service data are organized by columns,
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while the yearly salary data is organized in rows. But the file can
be rearranged, as shown below in the next method, and then using
DC_READ_FIXED becomes a viable (and time-saving) option.

Method 2 — Read the File with DC_READ_FIXED

Suppose the file was much longer than we are able to show in
this example, and you wanted to use some of PV=WAVE’s power-
ful data connection and table building utilities to read and process
the data. If the file was organized a bit differently,
DC_READ_FIXED could be used to read the data. Then, the
BUILD_TABLE function could be used to quickly organize the
data in a table structure. The new file organization is shown below:

Bulilwinkle Boris Natasha Rocky

10 11 10 11

1000.0 9000.97 1100.0 2000.0
5000.0 3000.0 1000.12 3500.0 6000.0 900.0
400.0 500.0 1300.10 350.0 745.0 3000.0
200.0 100.0 100.0 50.0 60.0 0.25
950.0 1050.0 1350.0 410.0 797.0 200.36
2600.0 2000.0 1500.0  2000.0 1000.0 400.0
1000.0 9000.0 1100.0 0.0 0.0 2000.37

5000.0 3000.0 1000.01 3500.0 6000.0 900.12

The following PV-WAVE statements read the data file shown
above and display a summary of its contents on the screen:

name = STRARR(4) & years = INTARR(4)
salary = FLTARR(12, 4)

Create variables to hold the name, number of years, and
monthly salaries.
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status = DC_READ_FIXED('bullwinkle.wp’, $
name, years, salary, Format= "(4Al6, " + §
"/, I3, 3(10X,13), /, 48(F7.2, 3X))", $
Ignore=["$BLANK LINES"])

DC_READ_FIXED handles the opening and closing of the
file. It transfers the values in “bullwinkle.wp” to the vari-
ables in the variable list, working from left to right. The two
slashes in the format string force DC_READ_FIXED to
switch to a new record in the input file.

When reading row-oriented data, each variable is “filled up”
before any data is transferred to the next variable in the
variable list. The value of the Ignore keyword insures that
all blank lines are skipped instead of being interpreted as
data.

PRINT, ’‘Name Years Yearly Salary’

PRINT, oo oo oo oo o e
Print a heading and ruling line for the heading.

yearly salary = FLTARR(4)
FOR I = 0,3 DO BEGIN
One row at a time, total the monthly salaries.
yearly salary(I) = TOTAL(salary[*,I])
Use array subscripting notation to total all twelve months of
salary for each employee.
ENDFOR

zz = BUILD_TABLE( 'name, years, yearly salary’)
Create a table structure, with each column of information being
an individual tag of the structure.

FOR I = 0,3 DO BEGIN
Print one row at a time.
PRINT, Format="(Al6, 3X, 15, 5X, F10.2)", §
zz(I).name, zz(I).years, zz(I).$
yearly salary
Print the employee information. Each column of informa-
tion is now a tag of the zz table.

ENDFOR

You do not need to understand structures to work with tables. For
a comparison of tables and structures, refer to the section Chapter
8, Creating and Querying Tables, in the PV=-WAVE User’s Guide.

Note
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Just like in Method 1, the output from executing the statements
shown above is:

Name Years Yearly Salary
Bullwinkle 10 32501.09
Boris 11 6805.35
Natasha 10 14257.36
Rocky 11 32500.50

Now you could easily enter commands to sort the table, using a
variety of criteria. Suppose you want to rearrange the table (in
descending order) so that the employee with the highest salary is
listed first:

by val = QUERY TABLE(zz, $
'* Order By yearly_ salary Desc’)

FOR I = 0,3 DO BEGIN
Print one row at a time.
PRINT, Format="(Al6, 3X, I5, 5X, F10.2)", $
by val(I).name, by_val(I).years, $
by val(I).yearly_ salary
Print the employee information. Each column of informa-
tion is a tag of the by_val table.

ENDFOR

The output is now sorted in descending order by yearly salary:

Name Years Yearly Salary
Bullwinkle 10 32501.09
Rocky 11 32500.50
Natasha 10 14257.36
Boris 11 6805.35
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Now suppose you want to rearrange the table (in ascending alpha-
betical order) so that the employees are listed alphabetically:

by_val = QUERY_TABLE(zz, '* Order By name’)

FOR I = 0,3 DO BEGIN
Print one row at a time.
PRINT, Format="(Al6, 3X, I5, 5X, F10.2)", $
by_val(I).name, by val(I).years, $
by _val(I).yearly_ salary
Print the employee information.
ENDFOR

The output is now sorted in ascending alphabetic order:

Name Years Yearly Salary
Boris 11 6805.35
Bullwinkle 10 32501.09
Natasha 10 14257.36
Rocky 11 32500.50

For more information about PV=WAVE’s functions for sorting and
organizing table structures, and the keywords that can be used
inside the QUERY_TABLE sort string, refer to Chapter 8, Creat-
ing and Querying Tables, in the PV=WAVE User’s Guide.

Reading Records Containing Multiple Array Elements

Frequently, data is written to files with each record containing sin-
gle elements of more than one array. For example, a file might
contain observations of altitude, pressure, temperature, and veloc-
ity, with each line (or record) containing a value for each of the
four variables. Data files like this are called record-oriented files,
and PV=-WAVE offers several different ways to read them, as
shown below.
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Example 1 — Column-oriented FORTRAN Write

A FORTRAN program that writes the data and the PV=WAVE
program that reads the data are shown below:

FORTRAN Write

This FORTRAN program writes the data by creating an array with
as many columns as there are variables and as many rows as there
are elements.

DIMENSION ALT(100), PRES(100), TEMP(100),
CVELO(100)
OPEN (UNIT=1, STATUS='NEW’, FILE='aptv.dat’)

Other commands go here.

WRITE (1,’'(4(1x, G15.5))")
C(ALT(I), PRES(I), TEMP(I), VELO(I), I = 1,100)
END

PV-WAVE Read (Method 1)

The data is read into an array, the array is transposed storing each
variable as a row, and each row is extracted and stored in a one-
dimensional variable.

OPENR, 1, ’aptv.dat’
Open file for input.

A = FLTARR(4,100)
Define variable to hold 100 observations of data, 4 values per
observation.

READF, 1, A
Read the data.

A = TRANSPOSE(A)
Transpose array so that columns become rows.
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alt = A(*,0) & pres = A(*,1) &

temp = A(*,2) & velo = A(*,3)
Extract the altitude, pressure, temperature, and velocity data
from variable A.

CLOSE, 1
Close the file.

PV-WAVE Read (Method 2)

In this method, the data is read by calling DC_READ_FIXED, one
of the DC routines for simplified 1/0:

status = DC_READ_FIXED('aptv.dat’, alt, §
pres, temp, velo, /Column, Format="%f")

DC_READ_FIXED transfers the values in “aptv.dat” to the
variables alt, pres, temp, and velo. One value from each
record is transferred to each variable. DC_READ_FIXED
creates the variables as floating-point vectors, with a
length that matches the number of values transferred into
the variables. DC_READ_FIXED handles the opening and
closing of the file.

The variables could now be easily placed into a table structure
with the following command:

aptv = BUILD_TABLE('alt, pres, temp, velo’)

Create a table structure, with each column of information being
an individual tag of the table.

For more information about what can be done with data once it is
placed into a table structure, refer to an earlier example on page
177, or refer to Chapter 8, Creating and Querying Tables, in the
PV=-WAVE User’s Guide.

Notice that the variables were not predefined with the FLTARR
function, as they were with Method 1. Because the variables were
not predefined, DC_READ_FIXED creates them all as one-
dimensional floating-point arrays dimensioned to match the num-
ber of records in the file. For example, suppose that each column
of data in aptv.dat contained 280 values. All four variables
(alt, pres, temp, and velo) would be created and dimen-
sioned as 280 element vectors.
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Example 2 — Row-oriented FORTRAN Write

The same data values may be written without the implied DO list,
writing all elements for each variable contiguously and simplify-
ing the FORTRAN write program:

FORTRAN Write

DIMENSION ALT(100), PRES(100), TEMP(100),
CVELO(100)
OPEN (UNIT=1, STATUS='NEW’, FILE='aptv.dat’)

. Other commands go here.

WRITE (1,’(4(1x,G15.5))’) ALT, PRES, TEMP,
CVELO
END

PV-WAVE Read (Method 1)

Read the data as an uninterrupted stream of values. In other words,
read the file as though it contains row-oriented data.

alt = FLTARR(100)
Create a floating-point array to hold the data.

pres = alt & temp = alt & velo = alt
Create more floating-point arrays, all the same size as alt.

OPENR, 1, 'aptv.dat’
Open file for input.

READF, 1, alt, pres, temp, velo
Read the data.

CLOSE, 1
Close the file.
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PV-WAVE Read (Method 2)

DC_READ_FIXED can be used to read row-oriented data; in fact,
this happens by default when the Column keyword is omitted from
the function call. However, when you are reading row-oriented
data, the import variables must be pre-dimensioned so that
DC_READ_FIXED knows how many values to store in each of
the variables included in the variable list:

alt = FLTARR(100)
Create a floating-point array to hold the data.

pres = alt & temp = alt & velo = alt
Create more floating-point arrays, all the same size as alt.

status = DC_READ FIXED('aptv.dat’, alt, §$
pres, temp, velo, Format="%f")

DC_READ_FIXED handles the opening and closing of the
file. It reads values from aptv.dat and stores them in the

variables alt, pres, temp, and velo. By default, the data is
read as row-oriented data. The returned value status can
be checked to see if the process completed successfully.

The format string shown in this example (Method 2) may be used
only if all of the variables in the variable list are typed as floating-
point, because the same C format string is used over and over to
read all the data values. For more information on format reversion,
(the process of re-using format strings when reading or writing
data), refer to Format Reversion on page 167.

If the variable list contained other data types besides floating-
point, the format string would have to be more specific, such as
the one used in the next example. Another alternative is to use
DC_READ_FREE (instead of DC_READ_FIXED) to read the
file, and then you aren’t required to supply any format string.

Not
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Example 3 — Using a FORTRAN Format String to Read Multiple
Array Elements

Assume that the data used is the same as that of the previous
examples, but a fifth variable, the name of an observer (which is a
string), has been added to the variable list. The FORTRAN output
routine and PV=WAVE input routine are shown below:

FORTRAN Write

DIMENSION ALT(100), PRES(100), TEMP(100),
CVELO(100)

CHARACTER*10 OBS(100)

OPEN (UNIT = 1, STATUS = 'NEW’, FILE =
C 'aptvo.dat’)

. Other commands go here.

WRITE (1,’(4(1X,G15.5), 2X, A)’) (ALT(I),
CPRES(I), TEMP(I), VELO(I), OBS(I), I = 1,100)
END

PV-WAVE Read (Method 1)

This method involves defining the arrays, defining a scalar vari-
able to contain each value in one record, then writing a loop to read
each line into the scalars, and finally storing the scalar values into
each array:

OPENR, 1, ’‘aptvo.dat’

Access file. This example reads files containing from 0 to 100
records.

alt = FLTARR(100)
Create a floating-point array to hold the data.

pres = alt & temp = alt & velo = alt
Create more floating-point arrays, all the same size as alt.

obs = STRARR(100)
Define string array.
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obss = ' !
Define scalar string.

I =0
Initialize counter.

WHILE NOT EOF(1) DO BEGIN
Beginning of read loop.
READF, 1, alts, press, $
temps, velos, obss, $
Format="(4(1X, G15.5), 2X, Al0)"

Read scalars; the last one is a string variable, and by
default, the first four are floating-point variables.

alt(I) = alts & pres(I) = press

temp(I) = temps & velo(I) = velos
obs(I) = obss

Store in each vector.
IF I LE 99 THEN I = I+1 ELSE CLOSE,1 & $
STOP, "Too many records."

Increment counter and check for too many records.

ENDWHILE
CLOSE, 1
Close the file.

If desired, after the file has been read and the number of observa-
tions is known, the arrays may be truncated to the correct length
using a series of statements similar to:

alt = alt(0:I-1)

The above represents a worst case example. Reading is greatly
simplified by writing data of the same type contiguously and by
knowing the size of the file. Another alternative is to use Method
2, shown below.

One frequently used technique is to include the number of obser-
vations in the first record so that when reading the data the size is
known.
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PV-WAVE Read (Method 2)

The DC_READ_FIXED function is ideal for situations such as
this one, where the columns are treated as different data types or
the number of lines or records in the file is not known.

obs = STRARR(100)
Define string array; let other variables use default floating-point
data type.

status = DC_READ_FIXED('aptvo.dat’, $

alt, pres, temp, velo, obs, /Column, $

Format="(4(1X, G15.5), 2X, Al0)", $

Resize=[1, 2, 3, 4, 5])
DC_READ_FREE handles the opening and closing of the
file. It reads values from aptvo.dat and stores them in the
variables alt, pres, temp, velo, and obs. The data is being
read as column-oriented data.

Because the Resize keyword was included with the
function call, all five variables are resizable and are
redimensioned to match the number of values actually
transferred from the file. The returned value status can be
checked to see if the process completed successfully.

Using the STRING Function to Format Data

The STRING function is very similar to the PRINT and PRINTF
procedures. You can even think of it as a version of PRINT that
places its ASCII output into a string variable instead of a file. If the
output is a single line, the result is a scalar string. If the output has
multiple lines, the result is a string array, with each element of the
array containing a single line of the output.

Example 1 — STRING Function without Format Keyword

Three variations using the STRING function are shown below:

abc = STRING([65B,66B,67B])
abc = STRING([byte(’A’),byte(’'B’),byte(’'C’)1])
abc = STRING('A’'+'B'+'C")

In all three cases, abc has the same value, the string scalar 'ABC'.
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Example 2 — STRING Function with Format Keyword
The following PV=WAVE statements:

A = STRING(Format=’'("The values are:", ' + §
"y (I))’, INDGEN(5))
Create a string array named A.

INFO, A
Display information about A.

FOR I = 0, 5 DO PRINT, A(I)
Print the result.

produce the following output:

A STRING = Array(6)
The values are:

w N = O

4

For additional details about the STRING function, see its descrip-
tion in the PV=WAVE Reference.

Input and Output of Binary Data

Binary I/O involves the transfer of data between a file and memory
without conversion to and from a character representation. Binary
I/0 is used when efficiency is important and portability is not an

issue; it is faster and requires less space than human-readable 1/O.

Binary I/O is almost always used for the transfer of image data,
such as TIFF images, or 8- and 24-bit images.

PV=WAVE provides many procedures and functions for perform-
ing binary I/O; they are listed in Table 8-3 on page 154. All of the
routines listed in Table 8-3 are described in this section except

ASSOC and GET_KBRD; these important functions are discussed

188 PV=WAVE Programmer’s Guide for Advantage and CL



in Associated Variable Input and Output on page 212 and Getting
Input from the Keyboard on page 222.

Input and Output of Image Data

Images are frequently stored using either 8-bit or 24-bit binary
data. 8-bit data is capable of displaying 28 different colors, while
24-bit data is capable of displaying 224 different colors.

Images are treated in the same manner as any PV=WAVE variable.
Images may be either square or rectangular. There is no restriction
placed on the size of images by PV=WAVE; the limiting factors are
the maximum amount of virtual memory available to you by the
operating system and the processing time required.

8-bit and 24-bit Image Data
Image data is usually stored in either an 8-bit or 24-bit format:

e 8-bit Format — Images in 256 shades of gray or 256 discrete
colors (sometimes known as “pseudo-color”).

e 24-bit Format — 3-color RGB (8 bits Red/8 bits Green/
8 bits Blue) images.

8-bit images must be stored in a 2-dimensional PV=WAVE vari-
able, and 24-bit images must be stored in a 3-dimensional
PV=-WAVE variable. For more information about how the RGB
information in 24-bit image data is stored, refer to Image Inter-
leaving on page 193.

Your workstation or device must support 24-bit color mode if you
intend to view 24-bit images with PV=WAVE. To find out if your
device has this capability, refer to Appendix A, Output Devices
and Window Systems, in the PV=WAVE User s Guide.

Image Data Input

Image data can be imported using either the READU or

the ASSOC commands. However, one of the easiest ways to
import image data is to use either the DC_READ_8_BIT or
DC_READ_24_BIT functions. For example, if the file
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hero. img contains a 786432 byte 24-bit image-interleaved
image, the function call:

status = DC_READ 24 BIT('hero.img’, $
hero, Org=1)

reads the file hero. img and creates a 512-by-512-by-3 image-
interleaved byte array named hero.

When you do not pre-dimension the variable, PV=WAVE creates
either a two- or three-dimensional byte variable, depending on
whether you are using DC_READ_8 BIT or DC_READ_24_BIT.
It also checks the total number of bytes in the file and automati-
cally dimensions the import variable such that it matches the
organization of the file.

To see a complete list of the image sizes that PV=WAVE checks for
as it reads image data, refer to the function descriptions for
DC_READ_8_BIT and DC_READ_24_BIT; you can find these
descriptions in a separate volume, the PV=-WAVE Reference.

If you don’t want PV=WAVE guessing the dimensions of the vari-
able, you need to explicitly dimension it.

For 8-bit image data, dimension the variable as w-by-h, where w
and A are the width and height of the image in pixels. For 24-bit

image data, the image variable should be dimensioned in the fol-
lowing manner:

* Pixel Interleaved — Dimension the import variable as 3-by-
w-by-h, where w and A are the width and height of the image
in pixels.

* Image Interleaved — Dimension the import variable as w-
by-h-by-3, where w and 4 are the width and height of the
image in pixels.

For a comparison of pixel interleaving and image interleaving,

refer to Image Interleaving on page 193.

One popular way of importing binary image data is with the
ASSOC command. The advantages of this method are described
further in Advantages of Associated File Variables on page 212.
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Image Data Output

Image data can be exported using either the WRITEU or

the ASSOC commands. However, one of the easiest ways to
output image data is to use either the DC_WRITE_8_BIT or
DC_WRITE_24_BIT functions. For example, if fft_flowisa
600-by-800 byte array containing image data, the function call:

status = DC_WRITE_8 BIT('fft_flowl.img’', $§
fft flow)

creates the file fft_flowl.img and uses it to store the image
data contained in the variable £ft_flow.

The dimensionality of the output image variable should be the
same as discussed in the previous section for image data input.

Tip' One popular way of exporting binary image data is with the
ASSOC command. The advantages of this method are described
further in Advantages of Associated File Variables on page 212.

TIFF Image Data

The TIFF (Tag Image File Format) is a standard format for encod-
ing image data. Visual Numerics’ TIFF /O follows the guidelines
set forth in a Technical Memorandum, Tag Image File Format
Specification, Revision 5.0 (FINAL), published jointly by Aldus™
Corporation and Microsoft™ Corporation.

The two functions provided specifically for transferring TIFF
images are:

DC_READ_TIFF
DC_WRITE_TIFF

These functions are easy to use. For example, if the variable mav-
erick is a 512-by-512 byte array, the function call:

status = DC_WRITE_TIFF('mav.tif’, maverick, $
Class='Bilevel’, Compress='Pack’)

creates the file mav.tif and uses it to store the image data
contained in the variable maverick. The created TIFF file is
compressed and conforms to the TIFF Bilevel classification.
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Not

For additional details about the DC_READ_TIFF and
DC_WRITE_TIFF functions, see their descriptions in the
PV=-WAVE Reference.

Compressed TIFF Files

TIFF files can be compressed if you are interested in saving disk
space. Compressed TIFF files will take slightly longer to open
than uncompressed TIFF files, but are a smart choice if you are
willing to trade off a slightly slower access time for reduced file
size.

Only TIFF class Bilevel (Class 'B') images can be compressed.

TIFF Conformance Levels

When using DC_READ_TIFF and DC_WRITE_TIFF, you are
able to select the class (level of TIFF conformance) that you wish
to follow. The four conformance levels are:

* Bilevel — All pixels are either black or white; no shades of
gray are supported.

* Grayscale — Each pixel is described by eight bits (a byte).
With eight bits, 28 shades of gray can be represented.

* Palette Color — Each pixel is described by eight bits (a byte),
so 28 discrete colors can be represented. During output, you
must supply a colortable that can be stored with the image;
you do this using the Palette keyword.

* RGB Full Color — Each pixel is described by 24 bits (1 byte
red, 1 byte green, and 1 byte blue). With 24 bits, 224 full RGB
colors can be represented.

If Palette Color is selected, you must supply (using the Palette
keyword) a 3-by-256 array of integers that describes the colortable
to be used by the TIFF image.

If RGB Full Color is selected, the export variable must be a w-by-
h-by-3 byte image interleaved array. (The letters w and 4 denote

the width and height of the image, respectively.) Pixel interleaved
24-bit data cannot be exported to a TIFF file. The details of pixel
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interleaving and image interleaving are described in the next sec-
tion.

Image Interleaving

Interleaving is the method used to organize the bytes of red, green,
and blue image data in a 24-bit image. In other words, each of the
basic colors requires 1 byte (8 bits) of storage for each pixel on the
screen; the question is whether to store the color data as RGB trip-
lets, or to group all the red bytes together, all the green bytes
together, and all the blue bytes together. The two options are
shown below:

Pixel Interleaving Image Interleaving
RGBRGBRGBRGB RRRRRRRRRRRR
RGBRGBRGBRGB GGGGGGGGGGGG
RGBRGBRGBRGB BBBBBBBBBBBB

For more information about how the image variable should be
dimensioned to match the various interleaving methods, refer to
Image Data Input on page 189.

READU and WRITEU

READU and WRITEU provide PV=WAVE'’s basic binary (unfor-
matted) input and output capabilities. WRITEU writes the contents
of its variable list directly to the file, and READU reads exactly the
number of bytes required by the size of its parameters. Both pro-
cedures transfer binary data directly, with no interpretation or
formatting.

The general form for using either READU or WRITEU is:
READU, unit, var,,...,var,
WRITEU, unit, var,,...,var,

where var; represents one or more PV=WAVE variables (or
expressions in the case of output).
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Transferring Data with READU and WRITEU

Example 1 — C Program Writes, PV-WAVE Reads

The following C program produces a file containing employee
records. Each record stores the first name of the employee, the
number of years they have been employed, and their salary history
for the last 12 months.

C Program Write

#include <stdio.h>

main()
{
static struct rec {
char name [16]; /* Employee's name */
int years; /* Years with company*/

float salary([l2]; /* Salary for last */
/* 12 months */

} employees[] = {

{"Bullwinkle", 10,
{1000.0, 9000.97, 1100.0, 0.0, 0.0, 2000.0,
5000.0, 3000.0, 1000.12, 3500.0, 6000.0,
900.0} 1},

{"Boris", 11,
{400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0,
200.0, 100.0, 100.0, 50.0, 60.0, 0.25} },

{"Natasha", 10,
{950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36,
2600.0, 2000.0, 1500.0, 2000.0, 1000.0,
400.0} 1},

{"Rocky", 11,
{1000.0, 9000.0, 1100.0, 0.0, 0.0, 2000.37,
5000.0, 3000.0, 1000.01, 3500.0, 6000.0,
900.12} }

}i

FILE *outfile;

outfile = fopen("bullwinkle.dat", "w");

(void) fwrite(employees, sizeof(employees), 1,
outfile);
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(void) fclose(outfile);
}

Running this program creates the file bullwinkle.dat con-
taining the employee records.

PV-WAVE Read

The following PV-WAVE statements can be used to read the data
inbullwinkle.dat:

strl6é = STRING(REPLICATE(32b,16))

Create a string with 16 characters so that the proper number of
characters will be input from the file. REPLICATE is used to cre-
ate a byte array of 16 elements, each containing the ASCII code
for a space (32). STRING turns this byte array into a string con-
taining 16 blanks.

A = REPLICATE({employees, name:strlé6, $
years:0L, salary:fltarr(12)}, 4)

Create a structure of four employee records to receive the
input data.

OPENR, 1, ’bullwinkle.dat’
Open the file for input.

READU, 1, A
Read the data.

CLOSE, 1
Close the file.

For other examples of how to read bullwinkle.dat with
PV=WAVE, refer to Reading, Sorting, and Printing Tables of For-
matted Data on page 175.

Example 2 — PV-WAVE Writes, C Program Reads

PV-WAVE Write

The following PV=WAVE program creates a binary data file con-
taining a 5-by-5 array of floating-point values:
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OPENW, 1, ’'float.dat’
Open a file for output.

WRITEU, 1, FINDGEN(5, 5)

Write a 5-by-5 array with each element set equal to its one-
dimensional index.

CLOSE, 1
Close the file.

C Program Read

The file f1oat .dat can be read and printed by the following C
program:

#include <stdio.h>
main()

{ float data[5][5];
FILE *infile;
int i, j;
infile = fopen("float.dat", "r");
(void) fread(data, sizeof(data), 1,
infile);
(void) fclose(infile);
for (i = 0; 1 < 5; i++)

{
for (3 = 0; j < 5; j++)
printf("$8.1f", data[i][]]);
printf("\n");
}

}

Running this program results in the following output:

0.0 1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0 9.0
10.0 11.0 12.0 13.0 14.0
15.0 16.0 17.0 18.0 19.0
20.0 21.0 22.0 23.0 24.0
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Binary Transfer of String Variables

The only PV=WAVE basic data type that does not have a fixed size
is the string data type. A PV=WAVE string variable has a dynamic
length that is dependent only on the length of the string currently
assigned to it. Thus, although it is always possible to know the
length of the other types, string variables are a special case.
PV-WAVE uses the following rules to determine the number of
characters to transfer:

« Input — Input enough bytes to fill the currently defined
length of the string variable.

e Output — Output the number of bytes contained in the string.
This number is the same number that would be returned by the
STRLEN function. In other words, the output string contains
only the characters in the string and does not include a termi-
nating null byte.

Note ' These rules imply that when reading into a string variable from a
file, you must usually know the length of the original string so as
to be able to initialize the destination string to the correct length.
The following example demonstrates the problem and shows how
to use the STRLEN function to programmatically initialize the
string length.

Examples of Binary String Data Transfer
For example, the following PV=WAVE statements:

OPENW, 1, ’'temp.txt’
Open a file.

WRITEU, 1, ’‘Hello World’
Write an 11-character string.

POINT_LUN, 1, 0
Rewind the file.

A =" ’
Prepare a 9-character string.
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READU, 1, A
Read the string in again.

PRINT, A
Show what was input.

CLOSE, 1

produces the following output because the receiving variable A
was not long enough:

Hello Wor

The only solution to this problem is to know the length of the
string being input. One way to do this is to store the length of the
string(s) in the file at the time the file is created. The following
PV=WAVE statements demonstrate a technique for doing this:

hello = 'Hello World’
Define a string variable that contains the desired string.

len = 0
len = STRLEN(hello)

Initialize an integer variable, and then use it to store the length
of the string variable.

OPENW, 1, 'temp.txt’
Open a file.

WRITEU, 1, len
Write the string length to the file.

WRITEU, 1, hello
Now write the string to the file.

Now that the string length (an integer), followed by the string,
have been stored in the file, prepare to read the string back into
PV=WAVE:

len_input = 0

READU, 1, len_input
Initialize an integer variable, and then use it to read the string
length.
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A = STRING(REPLICATE(32b, len_input))

Create a string of the desired length, initialized with blanks. The
result of the call to REPLICATE is a byte array with the neces-

sary number of elements, each element initialized to 32, which

is the ASCII code for a blank. When this byte array is passed to
STRING, itis converted to a scalar string containing this number
of blanks.

READU, 1, A
Read the string.

PRINT, A
Show what was input.

CLOSE, 1
produces the following output:
Hello World

This example takes advantage of the special way in which the
BYTE and STRING functions convert between byte arrays and
strings. See the descriptions of the BYTE and STRING functions
for additional details. These descriptions are alphabetically
arranged in the PV=WAVE Reference.

Reading UNIX FORTRAN-Generated Binary Data

Although the UNIX operating system considers all files to be an
uninterpreted stream of bytes, FORTRAN considers all I/O to be
done in terms of logical records. In order to reconcile the FOR-
TRAN need for logical records with the UNIX operating system,
UNIX FORTRAN programs add a longword count before and
after each logical record of data. These longwords contain an inte-
ger count giving the number of bytes in that record.

The use of the F77_Unformatted keyword with the OPENR state-
ment informs PV=WAVE that the file contains binary data
produced by a UNIX FORTRAN program. When a file is opened
with this keyword, PV=WAVE interprets the longword counts
properly, and is able to read and write files that are compatible with
FORTRAN.
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Example — UNIX FORTRAN Program Writes, PV-WAVE Reads

The following UNIX FORTRAN program produces a file contain-
ing a 5-by-5 array of floating-point values, with each element set
to its one-dimensional subscript. It is thus a FORTRAN imple-
mentation of the PV=WAVE FINDGEN function for the special
case of a 5-by-5 array.

FORTRAN Write

INTEGER I, J
REAL DATA(5, 5)
OPEN(1, STATUS = "new", FILE = "mydata",
FORM = "unformatted")
DO 100 J =1, 5
DO 100 I =1, 5
DATA(I,J) = ((J-1) * 5) + (I-1)

100 CONTINUE

WRITE(1) DATA
END

Running this program creates a file mydata that contains the
array of numbers.

PV-WAVE Read (Method 1)

The following PV=WAVE statements can be used to read this file
and print its contents:

OPENR, 1, ’'mydata’, /F77_Unformatted

Open the file. The F77_Unformatted keyword lets PV=WAVE
know that the file contains binary data produced by a UNIX FOR-
TRAN program.

A = FLTARR(5, 5, /Nozero)

Create an array to hold the data. The command executes faster
because the Nozero keyword disables the automatic zeroing of
each value that normally occurs.

READU, 1, A
Read the data in a single input operation.
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PRINT, A
Print the result.

CLOSE, 1
Close the file.

Executing these PV=WAVE statements results in the following
output:

0.0000 1.0000 2.0000 3.0000 4.0000
5.0000 6.0000 7.0000 8.0000 9.0000
10.0000 11.0000 12.0000 13.0000 14.0000
15.0000 16.0000 17.0000 18.0000 19.0000
20.0000 21.0000 22.0000 23.0000 24.0000

PV-WAVE Read (Method 2)

Because binary data produced by UNIX FORTRAN programs are
interspersed with these “extra” longword record markers, it is
important that the PV=WAVE program read the data in the same
way that the FORTRAN program wrote it. For example, consider
the following attempt to read the above data file one row at a time:

OPENR, 1, ’'mydata’, /F77_Unformatted

Open the file. The F77_Unformatted keyword lets PV=WAVE
know that the file contains binary data produced by a UNIX FOR-
TRAN program.

A = FLTARR(5, /Nozero)
Create an array to hold one row of the array.

FOR I = 0, 4 DO BEGIN
One row at a time.
READU, 1, A

Read a row of data.
PRINT, A
Print the row.

ENDFOR

CLOSE, 1
Close the file.
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Not

Executing these PV=WAVE statements produces the output:

0.00000 1.00000 2.00000 3.00000 4.00000

$End of file encountered. Unit: 1.
File: mydata
$Execution halted at $SMAINS (READU) .

This program read the single logical record written by the FOR-
TRAN program as if it were written in five separate records.
Consequently, it reached the end of the file after reading the first
five values of the first record.

For information about using similar commands to read a seg-
mented record file created on a VMS system, refer to the example
in the next section.

Reading VMS FORTRAN-Generated Binary Data

By default, VMS FORTRAN programs create data files using
segmented records, a scheme used by FORTRAN to write data
records with lengths that exceed the actual record lengths allowed
by VMS.

In segmented record files, a single segmented record is written as
one or more actual VMS records. Each of the actual records has a
two-byte control field prepended that allows FORTRAN to recon-
struct the original record.

Example — VMS FORTRAN Program Writes, PV-WAVE Reads

VMS FORTRAN Write

The following VMS FORTRAN program produces a file contain-
ing a 5-by-5 array of floating-point values, with each element set
to its one-dimensional subscript. It is thus a FORTRAN imple-
mentation of the PV=WAVE FINDGEN function for the special
case of a 5-by-5 array:
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INTEGER I, J
REAL DATA(S5, 5)
OPEN(1, STATUS = "new", FILE = "mydata",
FORM = "unformatted")
DO 100 J =1, 5
DO 100 I =1, 5
DATA(I,J) = ((J-1) * 5) + (I-1)
100 CONTINUE

WRITE(1) DATA
END

Running this program creates a file mydata that contains the
array of numbers.

PV-WAVE Read (Method 1)

PV=WAVE is able to read and write segmented record files if the
OPEN statement used to access the file includes the Segmented
keyword. The following PV=WAVE statements can be used to
read this file and print its contents to the screen:

OPENR, 1, ’'data.dat’, /Segmented

Open the file. The Segmented keyword lets PV=WAVE know
that the file contains VMS FORTRAN segmented records.

A = FLTARR(5, 5, /Nozero)
Create an array to hold the data. The command executes faster
because the Nozero keyword disables the automatic zeroing of
each value that normally occurs.

READU, 1, A
Read the data in a single input operation.

PRINT, A

Print the result.
CLOSE, 1

Close the file.

Executing these PV=WAVE statements results in the following
output:
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0.0000 1.0000 2.0000 3.0000 4.0000
5.0000 6.0000 7.0000 8.0000 9.0000
10.0000 11.0000 12.0000 13.0000 14.0000
15.0000 16.0000 17.0000 18.0000 19.0000
20.0000 21.0000 22.0000 23.0000 24.0000

PV-WAVE Read (Method 2)

As with all record-oriented 1/0, it is important that the PV=WAVE
program read the data in the same way that the VMS FORTRAN
program wrote it. For example, consider the following attempt to
read the above data file one row at a time:

OPENR, 1, ’‘mydata’, /Segmented

Open the file. The Segmented keyword lets PV=WAVE know
that the file contains VMS FORTRAN segmented records.

A = FLTARR(5, /Nozero)
Create an array to hold one row of the array.

FOR I = 0, 4 DO BEGIN
One row at a time.
READU, 1, A

Read a row of data.
PRINT, A
Print the row.

ENDFOR
CLOSE, 1
Close the file.

Executing these PV=WAVE statements produces the output:
0.00000 1.00000 2.00000 3.00000 4.00000

$End of file encountered. Unit: 1.
File: mydata
$Execution halted at $MAINS (READU) .

This program read the single logical record written by the FOR-
TRAN program as if it were written in five separate records.
Consequently, it reached the end of the file after reading the first
five values of the first record.
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External Data Representation (XDR) Files

Normally, binary data is not portable between different machine
architectures because of differences in the way different machines
represent binary data. For example, a binary data file produced on
an HP 9000 Series 700 workstation would differ from one pro-
duced on a Sun-4 or a DECstation 3100. It is, however, possible to
produce binary files that are portable, by specifying the Xdr key-
word with the OPEN procedures. XDR represents a compromise
between the extremes of ASCII and binary I/0.

XDR (eXternal Data Representation, developed by Sun Microsys-
tems, Inc.) is a scheme under which all binary data is written using
a standard “canonical” representation. All machines supporting
XDR (such as Sun and DEC workstations) understand this stan-
dard representation, and have the ability to convert between it and
their own internal representation.

XDR converts between the internal and standard external binary
representations for data, instead of simply using the machine’s
internal representation. Thus, it is much more portable than pure
binary data, although it is still limited to those machines that sup-
port XDR. However, XDR is widely available and can be easily
moved to any UNIX system.

XDR is not as efficient as pure binary I/O because it does involve
the overhead of converting between the external and internal
binary representations. Nevertheless, it is still much more efficient
than ASCII I/O because conversion to and from ASCII characters
is much more involved than converting between binary represen-
tations.

Opening XDR Files

Since XDR adds extra “bookkeeping” information to data stored
in the file, and because the binary representation used may not
agree with that of the machine being used, it does not make sense
to access an XDR file without using the Xdr keyword.
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Not

To use the XDR format, you must specify the Xdr keyword when
opening the file. For example:
OPENW, /Xdr, 1, ’'data.dat’

OPENW and OPENU normally open files for both input and out-
put. However, XDR files can only be open in one direction at a
time. Thus, using these procedures with the Xdr keyword results
in a file open for output only and the only I/O data transfer routines
that can be used is WRITEU. OPENR works in the usual way.

Transferring Data To and From XDR Files

The primary differences in the way PV=WAVE 1/O procedures
work with XDR files, as opposed to other data files, are listed
below:

* The only I/O data transfer routines that can be used with a file
opened for XDR are READU and WRITEU.

* The length of strings is saved and restored along with the
string. This means that you do not have to initialize a string of
the correct length before reading a string from the XDR file.
(This is necessary with normal binary I/O, and is described in
Binary Transfer of String Variables on page 197.)

* For the sake of efficiency, byte data is transferred as a single
unit. Therefore, byte variables must be initialized to a length
that matches the data to be input. Otherwise, an error message
is displayed. See the following example for more details.

Example — Reading Byte Data from an XDR File

For example, given the statements:

OPENW, /Xdr, 1, ’'data.dat’
Open a file for XDR output.

WRITEU, 1, BINDGEN(10)
Write a 10-element byte array.

CLOSE, 1
Close the file ...
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OPENR, /Xdr, 1, ’'data.dat’
... and re-open it for input.

the following statements:

b = 0B
Define b as a byte scalar.

READU, 1, b

Try to read the first byte only.
CLOSE, 1

Close the file.

will result in the error:

$End of file encountered. Unit: 1.
File: data.dat
$Execution halted at $MAINS (READU) .

Instead, it is necessary to read the entire byte array back in one
operation using statements such as:

b = BYTARR(10)
Define b as a byte array.

READU, 1, b

Read the whole array back at once.
CLOSE, 1

Close the file.

Note ' This restriction (in other words, the necessity of transferring byte
data as a single unit) does not apply to the other data types.

Example — Reading C-generated XDR Data with PV-WAVE

C Program Write

The following C program produces a file containing different
types of data using XDR. The usual error checking is omitted for
the sake of brevity.

#include <stdio.h>

#include <rpc/rpc.h>
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[xdr_wave_complex() and xdr_wave_string()
included here)

For more information about xdr_wave_complex( ) and
xdr_wave_string( ), refer to a later section that follows this
example.

main()
{
static struct { /* output data */

unsigned char c;
short s;
long 1;
float f£f;
double d;
struct complex { float r, i } cmp;
char *str;

} data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello"
}i

u_int c_len = sizeof (unsigned char);

/* Length of a character */

char *c_data = (char *) &data.c;

/* Address of byte field */

FILE *outfile;

/* stdio stream pointer */

XDR xdrs;

/* XDR handle */

/* Open stdio stream and XDR handle */

outfile = fopen("data.dat", "w");

xdrstdio_create(&xdrs, outfile, XDR_ENCODE);

/* Output the data */

(void) xdr_bytes(&xdrs, &c_data, &c_len,
c_len);

(void) xdr_short(&xdrs, (char *) &data.s);

(void) xdr_long(&xdrs, (char *) &data.l);

(void) xdr_float(&xdrs, (char *) s&data.f);

(void) xdr_double(&xdrs, (char *) &data.d);

(void) xdr_wave_complex(&xdrs, (char *)
&data.cmp);

(void) xdr_wave_string(&xdrs, &data.str);
/* Close XDR handle and stdio stream */
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xdr_destroy(&xdrs);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the
XDR data.

PV-WAVE Read

The following PV=WAVE statements can be used to read this file
and print its contents to the screen:

data = {s, c:0B, s:0, 1:0L, £:0.0, d:0.0D, §$
cmp:COMPLEX(0), str:’' '}
Create structure containing correct types.

OPENR, /Xdr, 1, ’'data.dat’
Open the file for input.

READU, 1, data
Read the data.

CLOSE, 1
Close the file.

PRINT, data
Show the results.

Executing these PV=WAVE statements produces the output:
{1 2 3 4.00000 5.0000000
(6.00000, 7.00000) Hello}

For further details about XDR, consult the XDR documentation
for your machine. If you are a Sun workstation user, consult the
Network Programming manual.
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PV-WAVE XDR Conventions for Programmers

PV=WAVE uses certain conventions for reading and writing XDR
files. If you use XDR only to exchange data in and out of
PV=WAVE, you don’t need to be concerned about these conven-
tions because PV=WAVE takes care of it for you.

However, if you want to create PV=WAVE compatible XDR files
from other languages, you need to know the actual XDR routines
used by PV=WAVE for various data types. These routine names
are summarized in Table 8-9.

Table 8-9: XDR Routines Used

by PV-WAVE
Data Type XDR Routine
BYTE xdr_bytes()
INT xdr_short()
LONG xdr_long()
FLOAT xdr_float()

DOUBLE xdr_double()
COMPLEX xdr_wave_complex() *
STRING xdr_wave_string() *

The asterisk (*) indicates compound routines.

XDR Routines for Transferring Complex and String Data

The routines used for types complex and string are not primitive
XDR routines. Their definitions are shown in the following C
code:

bool_t xdr_wave_complex(xdrs, p)
XDR *xdrs;
struct complex { float r, i } “p;
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return(xdr_float(xdrs, (char *) &p->r)&&

xdr_float(xdrs, (char *) &p->i));

}
bool_t xdr_wave_string(xdrs, p)
XDR *xdrs;
char *"p;
{
int input = (xdrs->x _op == XDR_DECODE);
short length;
/* If writing, obtain the length */
if (!input) length = strlen(*p);
/* Transfer the string length */
if (!xdr_short(xdrs, (char *) &length))
return(FALSE);
/* If reading, obtain room for the string */
if (input)
{
*p = malloc((unsigned) (length + 1));
*p[length] = ’\0’;/* Null termination */
}
/* If nonzero, return string length */
return (length ? xdr_string(xdrs, p,
length) : TRUE);
}
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Associated Variable Input and Output

Not

Binary data stored in files often consists of a repetitive series of
arrays or structures. A common example is a series of images or a
series of arrays. PV=WAVE associated file variables offer a conve-
nient and efficient way to access data that comprises a sequence of
identical arrays or structures.

An associated variable is a variable that maps the structure of a
PV=WAVE array or structure variable onto the contents of a file.
The file is treated as an array of these repeating units of data. The
first array or structure in the file has an index of 0, the second has
index 1, and so on. The general form for using ASSOC is:

ASSOC(unit, array_structure [, offset])

For examples showing how to use the offser parameter, refer to a
later section, Using the Offset Parameter on page 216.

Associated variables do not use memory like a normal variable.
Instead, when an associated variable is subscripted with the index
of the desired array or structure within the file, PV=-WAVE per-
forms the 1/0 operation required to access that entire block of data.

VMS fixed-length record files must be accessed by ASSOC either
on record boundaries or an integer multiple of the number of data
elements on a record boundary.

Advantages of Associated File Variables

Associated file variables offer the following advantages over
READU and WRITEU for binary 1/O:

* 1/O occurs whenever an associated file variable is subscripted.
Thus, it is possible to perform 1/0 within an expression, with-
out a separate 1/0 statement.

*  The size of the data set is limited primarily by the maximum
size of the file containing the data, instead of the maximum
memory available. Data sets too large for memory can be eas-
ily accommodated.
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*  You do not have to declare the maximum number of arrays or
structures contained in the file.

»  Associated variables simplify access to the data. Direct access
to any element in the file is rapid and simple — there is no
need to calculate offsets into the file and/or position the file
pointer prior to performing the I/O operation.

For these reasons, associated variables are the most efficient form
of I/0.

Working with Associated File Variables

Assume that a file named today . dat exists, and that this file
contains a series of 10-by-20 arrays of floating-point data. The fol-
lowing two PV=-WAVE statements open the file and create an
associated file variable mapped to the file:

OPENU, 1, 'today.dat’
Open the file.

A = ASSOC(1, FLTARR(10, 20, /Nozero))

Define an associated file variable. Using the Nozero keyword
with FLTARR increases efficiency since ASSOC ignores the
value of the resultant array, anyway.

Note ' The order of these two statements is not important — it would be
equally valid to call ASSOC first and then open the file. This is
because the association is between the variable and the logical file
unit, not the file itself.

You may opt to close the file, open a new file using the same LUN,
and then use the associated variable without first executing a new
ASSOC. Naturally, an error occurs if the file is not open when the
file variable is subscripted in an expression, or if the file is open
for the wrong type of access (for example, trying to assign to an
associated file variable with a file opened with OPENR for read-
only access).

As a result of executing the two statements above, the variable A
is now an associated file variable. Executing the statement:

INFO, A
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produces the following response:
A FLOAT = File<today.dat> Array(10, 20)

The associated variable A maps the structure of a 10-by-20 float-
ing-point array onto the contents of the file today.dat. Thus,
the response from the INFO procedure shows it to be a two-dimen-
sional floating-point array.

Only the form of the array is used by ASSOC. The value of the
expression is ignored.

The ASSOC command doesn’t require that you use a particular
combination of dimensions to index into a file, although you may
have reasons to prefer one combination of dimensions over
another. For example, assume a number of 128-by-128 byte
images are contained in a file. The command:

row = ASSOC(1, BYTARR(128))

maps the file into rows of 128 bytes each. Thus, row( 3) is the
fourth row of the first image, and row(128) is the first row of
the second image. On the other hand, the command:

image = ASSOC(1, BYTARR(128,128))

maps the file into entire images. Now, image (4) is all 16384
values of the fifth image.

How Data is Transferred into Associated Variables

Once a variable has been associated with a file, data is read from
the file whenever the associated variable appears in an expression
with a subscript. The position of the array or structure read from
the file is given by the value of the subscript. The following
PV=-WAVE statements give some examples of using file variables:

Z = A(0)
Copy the contents of the first array into the normal variable Z. Z
is now a 10-by-20 floating-point array.
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FOR I =1,9 DO 2 = 2 + A(I)
Compute the sum of the first 10 arrays (Z was initialized in the
previous statement to the value of the first array. This statement
adds the following nine to it.).

PLOT, A(3)
Read the fourth array and plot it.

PLOT, A(5) - A(4)
Subtract array 4 from array 5, and plot the result. The result of
the subtraction is not saved after the plot is displayed.

An associated file variable only performs I/O to the file when it is
subscripted. Thus, the following two PV=WAVE statements do not
cause 1/O to happen:

B = A
This assignment does not transfer data from the file to variable
B because A is not subscripted. Instead, B becomes an associ-
ated file variable with the same dimensions, and to the same
logical file unit, as A.

B = 23
This assignment does not result in the value 23 being trans-
ferred to the file because variable B (which became an
associated file variable in the previous statement) is not
subscripted. Instead, B becomes a scalar integer variable
containing the value 23. It is no longer an associated file
variable.

Subscripting Associated File Variables During Input

When the associated file variable is defined to be an array, it is pos-
sible to subscript into the array being accessed during input
operations. For example, for the variable A defined above:

Z = A(0,0,1)
Assigns the value of the first floating-point element of the second
array within the file to the variable Z. The rightmost subscript is
taken as the index into the file causing PV=WAVE to read the
entire second array into memory. This resulting array expression
is then further subscripted by the remaining subscripts.
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